
International Journal of Computer Vision 63(1), 45–64, 2005
c© 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands.

Determining the Geometry of Boundaries of Objects from Medial Data∗

JAMES DAMON
Department of Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3250, USA

jndamon@email.unc.edu

Received July 18, 2003; Revised July 16, 2004; Accepted July 16, 2004

First online version published in December, 2004

Abstract. We consider a region � in R
2 or R

3 with generic smooth boundary B and Blum medial axis M , on
which is defined a multivalued “radial vector field” U from points x on M to the points of tangency of the sphere
at x with B. We introduce a “radial shape operator”Srad and an “edge shape operator”SE which measure how U
bends along M . These are not traditional differential geometric shape operators, nonetheless we derive all local
differential geometric invariants of B from these operators.

This allows us to define from (M, U ) a “geometric medial map”on M which corresponds, via a “radial map”
from M to B, to the differential geometric properties of B. The geometric medial map also includes a description
of the relative geometry of B. This is defined using the “relative critical set”of the radius function r on M . This
set consists of a network of curves on M which describe where B is thickest and thinnest. It is computed using the
covariant derivative of the tangential component of the unit radial vector field.

We further determine how these invariants are related to the differential geometric invariants of M and how these
invariants change under deforming diffeomorphisms of M .

Keywords: Blum medial axis, skeletal structures, intrinsic geometry, relative geometry, radial shape operator,
grassfire flow, radial flow, geometric medial map, relative critical set

Introduction

For 2D objects in R
2 or 3D objects in R

3 with (smooth)
boundaries B, the Blum medial axis M (Blum and
Nagel, 1978), or an appropriate variant, is a fundamen-
tal object for describing shape. There has been a signif-
icant body of work devoted to methods for computing
it, including the grassfire method (Kimia et al., 1990),
the Hamilton-Jacobi skeleton (Siddiqi et al., 2002), and
Voronoi methods (Szekely et al., 1994) among others.

Once we have the medial axis at our disposal, we may
then work with it as if it were a basic object which can
be manipulated, compared, deformed, or statistically
analyzed as e.g. done by Pizer et al. (1999, 2003) and
Yushkevich et al. (2002) etc. When such operations
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are applied to a medial axis, we would like to directly
deduce geometric properties of the resulting boundary,
including whether or not it remains smooth.

In this paper, we will determine how the geometric
properties of B can be directly computed from medial
data for the Blum medial axis M , including the question
of smoothness. This will provide a medial quantitative
description of geometric properties of objects, making
precise typically descriptive terms for objects as be-
ing thick or thin, lopsided, or their having bulges or
indentations.

Already M alone determines certain features such
as protrusions, provided the corresponding curvature
of the boundary changes sufficiently rapidly. However,
for a variety of objects which have approximately the
same Blum medial axis, there are significant differ-
ences in shapes arising from variations in the radius
function. These may involve differences in the intrinsic
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geometry, e.g. the sign of the Gaussian curvature, dif-
ferential geometry such as principal curvatures and di-
rections, and “relative geometry”such as identifying
regions where � is thickest or thinnest.

In the generic case, the medial axis M itself is a
“branched manifold” (which can be described more
formally as a “Whitney stratified set”). Associated to
it is a multivalued radial vector field U from points
of M to the corresponding points of tangency on the
boundary, and the radial distance function r = ||U ||.
There is the associated (multivalued) unit vector field
U1 such that U = rU1. As well there are differential
geometric properties of M , and natural orthonormal
frames on M can be constructed from r (see Pizer et al.,
2003). How do we extract intrinsic medial structures
from this medial data which explicitly determine the
geometric properties of B?

One natural approach has been to seek the relation
between the differential geometry of the boundary and
that of the (smooth part of the) medial axis using infor-
mation about the radius function r and its derivatives.
Results obtained by this approach include: curvature
of boundary curves in the 2D case, originating with
Blum and Nagel (1978); the Gaussian and Mean cur-
vatures of boundary surfaces in 3D by Nackman and
Pizer (1985) and Nackman (1982); and in the opposite
direction, deriving differential geometric properties of
the medial axis from the differential geometry of the
boundary by Siersma et al. (1998) and Siersma (1998)
and Van Manen (2003a, b). In both of the surface cases,
the relationship actually involves the differential geom-
etry of a parallel surface of the boundary (rather than
the boundary itself).

We shall determine the differential geometry of the
boundary, in any dimension, directly from medial struc-
tures we introduce; however, we take what appears to
be a counterintuitive approach to this problem by not
explicitly involving the differential geometry of the me-
dial axis itself Damon (2003) and Damon (2004).

The pair (M, U ) consisting of the Blum medial axis
and associated multivalued radial vector field is a spe-
cial case of a “skeletal structure” which satisfies ad-
ditional conditions, see Fig. 1. For a skeletal structure
(M, U ), we define “radial and edge shape operators”
Srad and SE , and a “compatibility 1-form” ηU . These
“shape operators” determine the “geometric proper-
ties of the radial vector field U1” relative to M and
are defined using only the first derivatives of U1. The
shape operators together with the radius function r al-
low us to determine the differential geometry of the

Figure 1. Blum medial axis and radial vector field for an object.

boundary in the Blum case. We transfer information
provided by these medial operators to geometric prop-
erties of the boundary via a “radial flow”, which is
a backwards version of the “grassfire flow” (Kimia,
1990) and yields a radial map from M to the associated
boundary.

To begin, we apply the dimension independent re-
sults from Damon (2003) and Damon (2004) to 2D
and 3D objects to give explicit formulas for the differ-
ential geometric shape operator for the object boundary
(Theorem 3.1). For points corresponding to non-edge
points of M , the formula is in terms of the radial shape
operator, while at “crest points”, which correspond to
edge points of M , the formula is in terms of the edge
shape operator (Theorem 3.4). We deduce explicit for-
mulas for both the principal curvatures and principal
directions for the boundary. Thus, we deduce all intrin-
sic and extrinsic differential geometry of the boundary
using the radial and edge shape operators.

Second, we introduce a “geometric medial map” on
the medial axis which identifies both intrinsic and “rel-
ative geometry” of the corresponding regions on the
object boundary. This map can be thought of as the
analogue of a weather map which provides informa-
tion about the atmosphere above a region of the earth.
A weather map typically shows regions of high and low
pressure, curves of constant temperature, and arrows
indicating wind direction, all exhibited on a map of
that region on the ground. In an analogous fashion, the
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Figure 2. Radial flow versus grassfire flow between the boundary B and the medial axis M (darkened branch curve), (a) Shows levels of the
grassfire flow, (b) Shows levels of the radial flow evolving along the multivalued radial vector field U.

Figure 3. Part of the intrinsic geometric medial map on the blum
medial axis M , showing regions of positive and negative radial cur-
vature on one side of M , which correspond to regions of positive and
negative gaussian curvature of one side of the region boundary.

geometric map on the medial axis will provide geo-
metric information about the boundary, but its mea-
surements only involve the unit radial vector field on
the medial axis.

We need only use the radial shape operator Srad to
construct the “intrinsic geometry portion” of the geo-
metric medial map. Since Srad depends upon the choice
of a value of U1, for each side of each smooth sheet
of M there will be a different Srad. Thus, the intrinsic
portion of the geometric medial map will be differ-
ent on each side of a smooth sheet of M . Although
Srad is not a differential geometric shape operator and
is not even symmetric, we treat it as if it were and
introduce analogous terminology: det (Srad) is the “ra-
dial curvature”; the eigenvalues and eigendirections of
Srad are “principal radial curvatures and directions”; the
curves with tangent lines the principal radial directions
are “principal radial curves” on M , etc. The geometric
medial map on each side of a smooth sheet of the me-
dial axis M consists of the following objects: regions
of positive and negative radial curvature separated by
radial parabolic curves, distinguished radial umbilic
points, and at each point pairs of principal radial di-
rections with principal radial curves, with the signs of
the principal radial curvatures. What is surprising is
that under the radial map these properties correspond
to the same differential geometric properties on the ob-
ject boundary (Theorem 4.2). More specific numerical
geometric information can be added with the inclusion
of r (Theorems 3.1 and 3.4).

The second portion of the geometric medial map
captures relative geometry of the boundary. Already
relative geometry on the medial axis appears when we
seek to compare the sizes of principal curvatures of the
boundary at distinct points or determine how principal
curvatures change along curves. This cannot be done
solely in terms of principal radial curvatures alone, but
also involve r as expressed by the radii of curvatures
equation (see Section 5). The properties of r as a func-
tion on M are key to relative geometry of the boundary.

For example, if we are asked where an object such
as an egg or a potato is thickest, we would not choose
along the long axis where it has the greatest diameter,
but rather where the width is greatest relative to the
central axis of the object. This is relative as opposed to
intrinsic geometry. We introduce on the smooth sheets
of M a discrete network of curves along which r is
relatively largest and smallest (ridges of thickness and
valleys of thinness) and where these properties undergo
transitions. This system is defined using the “relative
critical set” of r . This extends the notion of “ridge of a
function”, defined by Pizer and Eberly (1998), Eberly
(1996), to a complete set of relative critical data whose
generic properties have been determined for functions
on R

n for all n, see Damon (1998, 1999), Miller (1998)
and Keller (1999).

In our case, we define the relative critical set of r on
Mreg, the smooth part of M . This classification places
one of four labels on each part of a curve indicating
the behavior of the radial function r on that part. These
properties are defined and capture relative geometric
properties even in the non-Blum case. Since r is de-
fined on the smooth sheets of M rather than Euclidean
space, the definition involves the Hessian operator of
r ; however, the generic properties continue to hold by
Damon (in preparation).

In the Blum case, we reduce the calculation of these
curves to calculations involving the first derivative of
U1 tan, the tangential component of U1. Specifically
this involves the eigenvalues and eigenvectors of the
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Figure 4. Relative part of a geometric map on the blum medial
axis M showing the ridge curve of thickness (solid curve) and valley
curve of thinness (middle dotted curve, along with connector curves
(end dashed curves).

Hessian operator Hr (v) = −∇vU1 tan. In the Blum case,
both r and U1 tan are single–valued at smooth points of
M . Thus, the relative critical set has the same structure
on each side, and hence is intrinsic to each smooth sheet
of M . For example we see in Fig. 4, the ridges and val-
leys along with the connector curves indicating where
the object is thickest and thinnest and where transition
behavior occurs. The added data of the critical behavior
of r on the relative critical set completely determines
the thickness properties of the object.

When these two parts of the geometric map are com-
bined, they give a precise decomposition of the medial
axis which reflects via the radial map both the intrinsic
and relative geometric properties of the object bound-
ary.

We conclude by considering the effect on the asso-
ciated boundary of distorting or deforming the Blum
medial axis by a diffeomorphism. This effect is deter-
mined through the introduction of distortion operators
which determine how the radial and edge shape oper-
ators are changed as a result of the diffeomorphism.
This allows us to determine the smoothness and geom-
etry of the new boundary in terms of the original shape
operators and the distortion operators.

Finally we mention that in Damon (for publication)
we show how the radial shape operator plays a funda-
mental role in computing global invariants of � and B
as “skeletal and medial integrals” on M.

This author would like to especially thank Stephen
Pizer and his students Paul Yushkevich and Tom
Fletcher, whose original work concerning the geomet-

Figure 5. Possible local generic structures for blum medial axes in R
3 and the associated radial vector fields.

ric and smoothness properties of the boundary in terms
of the differential geometry of the medial axis in the
Blum case, raised questions which led to the approach
we present here.

1. Blum Medial Axis and the Radial Flow

We begin by briefly recalling the standard properties
of the Blum medial axis of a region � with smooth
boundary B. First, we consider the properties that oc-
cur generically, i.e. for almost all � which do not oth-
erwise satisfy any special symmetry conditions. These
properties have been worked out in general by sev-
eral workers besides Blum and Nagel (1978), including
Yomdin (1981) (as a “central set”), Mather (1983) (as
the Maxwell set for the “family of distance functions
on the boundary”), Bruce et al. (1983) and Bruce and
Giblin (1986), (for the more general symmetry set), and
Bogaevski (2002) (for transitions under variations). A
recent paper by Giblin (2000) very clearly describes
the main properties, and Pizer et al. (2003b) surveys
the properties in the multiscale context.

For generic 2D objects, the Blum medial axis con-
sists of smooth curves which may branch or end Blum
and Nagel (2002). For generic 3D objects the local
structure is also specifically given. Here generic means
“almost all” in a very precise mathematical sense (see
e.g. Mather, 1983), so that a nongeneric region can be
made generic by applying an arbitrarily small pertur-
bation of the boundary, while a generic region remains
generic under sufficiently small perturbations of the
boundary. For such generic 3D regions, the Blum me-
dial axis M consists of pieces of smooth surfaces which
may either: join in a Y-shaped configuration along a
branch curve; have edges; or have an edge appear (end)
at a “fin creation point” (which is an example of an
edge-closure point in Damon (2003)), or have a “6-
junction” configuration where six smooth sheets come
together along 4 Y-branch curves, as shown in Fig. 5.
The part of M formed from smooth points is denoted
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Figure 6. Possible nongeneric blum medial axes in R
3.

Mreg while the set of points of M where the three non-
smooth possibilities occur is the singular set of M,

denoted MSing. Although we shall describe results for
the smooth case, the results continue to hold for M and
U which are Ck for k ≥ 1.

M as well satisfies additional properties describ-
ing how exactly the smooth sheets behave at sin-
gular points. These are described by M being a
“Whitney stratified set” (see e.g., Mather, 1973 or
Gibson et al., 1976) and more specifically a “skeletal
set” (see Damon, 2003, Section 1). These extra con-
ditions rule out possible exotic behavior that does not
correspond to our intuitive ideas as presented in Fig. 5.
However, in what we do here we allow nongeneric be-
havior as might result from finite symmetry as exhibited
in Fig. 6.

On M is defined a multivalued radial vector field
U from points of M to the corresponding points of
tangency on the boundary, and radial distance function
(or radius function) r = ||U ||. For a smooth boundary
B, r > 0 so we may express U = rU1, for a (multi-
valued) unit vector field on M . On smooth points of
M (denoted Mreg), U has two values (called “sails” by
Pizer et al. (2003a) in work on “M-reps”). At a singu-
lar point x0 of M , the number of values of U is de-
termined by the number of connected components (the
“complementary components”) into which M divides
its complement in a small ball about x0. For example,
Y -shaped branch points have three local complemen-
tary components while fin creation points have two. For
edge points of M (denoted ∂ M), there is only a single
value for U which is tangent to M and points away
from M .

For a function or vector field to be differentiable on
M requires the usual notion of differentiablity on Mreg.
At points of Msing which are not edge (closure) points,
a smooth sheet of M can be extended smoothly through
the branch curve. Then, for a function or vector field
on the sheet to be differentiable at a point on the branch
curve, it must also extend smoothly. At edge (closure)
points, the usual notion of smoothness at an edge point
of a surface no longer suffices. Tom Fletcher pointed

Figure 7. Projection defining an edge parametrization for edge of
blum medial axis.

out that U will not be smooth in this sense. Instead, we
must introduce edge coordinates as in Damon (2003),
Section 1. These coordinates correspond to the projec-
tion of a half-parabolic surface as shown in Fig. 7. Then,
as shown in Damon (2003), Example 1.5, for edge co-
ordinates, both U and r are smooth at edge points.
Of course Blum medial axes do not naturally come
with these coordinates. Thus, we will state results at
edges which use edge coordinates and then explain (in
Section 2) how to use standard coordinates for surfaces
with edges to compute objects such as the edge shape
operator.

The pair consisting of the Blum medial axis together
with the radial vector field, (M, U ), forms a skele-
tal structure as defined in Damon (2003). For such a
skeletal structure we define the associated boundary as
B = {x + U (x) : x ∈ M} where we allow for each x
all possible values of U (x).

1.1. Radial Flow from the Blum Medial Axis

There is a way to relate the medial axis M and the
boundary B by the radial flow, which is a backward
version of the “grassfire flow” (Kimia, 1990) (also see
Siddiqi and Bouix, 2002). Locally it is defined us-
ing a smooth value of U in some neighborhood of
a point x0 ∈ M and given by the local radial flow
ψt (x) = x + tU (x). The time one value of this map
defines a radial map ψ1 (depending on the local choice
of U ) from a region of M to a corresponding region
of B. We note that as U is multivalued, the radial flow
cannot be globally defined from M to B (instead it is
globally defined on the “double of M”, see Damon,
2003, Section 3).

We compare the radial flow versus the grassfire flow
from the boundary to the medial axis. First, for the
grassfire flow: (i) the flow is along normals to the
boundary at unit speed; (ii) the level surfaces remain



50 Damon

normal to the lines of flow; (iii) the level sets are smooth
manifolds while they are defined until shocks occur;
(iv) then shocks occur at points of the Blum medial
axis; (v) thus, for each point the flow is defined for
a time that varies. By contrast, for the radial flow: (i)
the flow is along the radial lines from the medial axis
which correspond to normal lines to the boundary; (ii)
the flow occurs at speeds which depend upon the radius
function; (iii) the level sets Bt are not smooth but are
stratified sets and only become smooth at the boundary;
(iv) the level sets are not normal to the radial lines ; and
(v) the flow is defined from all points of the medial axis
for 0 ≤ t ≤ 1 and reaches the boundary when t = 1.

Thus, we can think of the radial flow as “inflating
the Blum medial axis” to fill out the region �, much as
we inflate a balloon; with a crucial difference that the
level surfaces Bt at time t < 1 fail to be smooth at all
points coming from Msing. Only at t = 1 do all of the
singularities disappear and the level surface of the flow
becomes the smooth boundary B.

1.2. Compatibility 1-form and Compatibility
Condition

Two key properties of the boundary are captured by a
compatibility condition on the Blum medial axis. The
compatibility 1-form ηU is defined by ηU (v) = U1 ·v+
dr (v); this is multivalued because U is. M satisfies the
compatibility condition at a point x0 with smooth value
U if ηU = 0 at x0. Then, by Damon (2003), Lemma 6.1
or Damon (2004), Lemma 3.1,

Proposition 1.1. The compatibility condition at a
smooth point x0 for the value U implies the orthogo-
nality of U to the boundary at the associated boundary
point; and the compatibility condition at a singular
point x0 for a value of U, implies that the bound-
ary is weakly C1 at the point associated to x0 via
U.

Example 1.2 (Compatibility Condition for 2D Medial
Axis). Let M be a 2D Blum medial axis. At a
point x0 on a branch curve γ of M, the compatibil-
ity condition has two implications. Both are conse-
quences of (1.1) which follows from the compatibility
condition.

dr (v) = −U1 · v = −U1 tan · v (1.1)

where U1 tan is the tangential component of U1 for the
smooth sheet in question and v is tangent to the sheet
at x0.

First, U1 · v is independent of the choice of smooth
value U at x0 when v is tangent to γ (by (1.1) because r
is uniquely defined on γ ). Second, Eq. (1.1) also applies
on each smooth sheet meeting γ , with v tangent to a
smooth sheet at x0 but normal to γ . The first condition
fixes a common tangential projection onto γ for all
values of U at the given point x0.

The second gives independent conditions for the tan-
gential component of each value of U1 on each sheet.
Let ∇r denote the “Riemannian gradient” of r as a
function on M (see Section 6). Then the compatibility
condition also asserts that on any smooth sheet the tan-
gential component U1 tan = −∇r . Hence, for v a unit
vector and θ the angle between U1 tan and v, (1.1) is
equivalent to ∇r · v = − cos(θ ). Thus, the angle ∇r
makes with unit vectors is also fixed by U1.

Also, ||∇r || < 1 off edge points as U1 is not tangent.
By contrast, at an edge point, U and hence U1 are tan-
gent to M , so ||∇r || = 1 on edge points. This can only
make correct sense at edge points if ∇r is computed
using edge coordinates.

Remark 1.3. Often the Blum medial axis is approxi-
mated using triangular or rectangular pieces. The edges
of these pieces are then included as part of the singular
set of M. Hence, the compatibility condition must also
be satisfied at these points in order to have smoothness
of the boundary. The difficulty of obtaining smoothness
is investigated in Yushkevich et al. (2002).

Finally, we mention that the Blum medial axis sat-
isfies additional special properties not possessed by a
general skeletal structure. These include : r being the
same for all values of U at a given point, and at smooth
points x0 ∈ Mreg, the two values of U making equal
angles with Tx0 M. We will find that these conditions
are not crucial for understanding the geometry of the
boundary.

2. Radial and Edge Shape Operators for 1D and
2D Medial Structures

2.1. Shape Operators and Principal Radial/Edge
Curvatures

We begin by recalling from Damon (2003) the defi-
nition of the radial and edge shape operators as they
apply to 1D and 2D medial axes.
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Figure 8. Projection for defining the radial shape operator. The
dashed line denotes projection onto Tx0 M along U .

2.2. Radial Shape Operator

Let (M, U ) denote a Blum medial axis with radial vec-
tor field. Suppose we choose in a neighborhood of a
non-edge point x0 ∈ M, a smoothly defined value for
U. Then, the radial shape operator (for this value of U )
is defined for a tangent vector v to M at x0 by

Srad(v) = −projU

(
∂U1

∂v

)

with projU denoting projection onto the tangent space
Tx0 M along U (in general, this is not orthogonal projec-
tion, see Fig. 8). Unlike the differential geometric shape
operator, Srad is in general not symmetric. For a basis v
of Tx0 M, we let Sv denote the matrix representation of
Srad. The principal radial curvatures and principal ra-
dial directions are the eigenvalues and eigendirections
of Srad.

Example 2.1. We first consider M a 1-dimensional
Blum medial axis of an object in R

2. If γ (s) is a local
parametrization of one of the smooth curve components
of M, then write

∂U1

∂s
= a · U1 − κr · γ ′(s) (2.1)

Then κr is principal radial curvature and the radial
shape operator is then just multiplication by κr .

Example 2.2. Second, let M be a 2-dimensional Blum
medial axis of an object in R

3. Let X (u1, u2) be a local
parametrization of an open set W of one of the smooth
sheets of M. Then, vi = ∂ X

∂ui
, i = 1, 2 gives a basis for

Tx0 Mat each point x0 ∈ W . We write

∂U1

∂ui
= ai · U1 − b1i · v1 − b2i · v2 i = 1, 2 (2.2)

Then,

Sv =
(

b11 b12

b21 b22

)
(2.3)

The principal radial curvatures are the two eigenvalues
κr1 and κr2 of Sv.

We remark that if we had used a different basis w
= {w1, w2}, then if C denotes the transformation for
the change of basis from v to w, then Sw, = C SvC−1.

2.3. Edge Shape Operator

Again we first give a dimension independent definition
and then consider its meaning for 1D and 2D Blum
medial axes. Let x0 be an edge point, with a smooth
value of U at x0 corresponding to one side of M . Also,
let n be a unit normal vector field to M pointing on the
same side of M as a smooth value of U . We define

SE (v) = −proj′
(

∂U1

∂v

)

Here proj′ denotes projection onto Tx0∂ M ⊕ 〈n〉 along
U (again generally this is not orthogonal, see Fig. 9).

We emphasize that ∂U1
∂v

has to be computed using
edge coordinates. For v ∈ Tx0∂ M , there is no problem,
it is only for v pointing out from ∂ M that we must
be careful. For a matrix repesentation of SE we use
a special basis v for Tx0 M consisting of a basis ṽ for
Tx0∂ M together with a vector in edge coordinates that
maps to a multiple of U1(x0). For Tx0∂ M ⊕ 〈n〉 we use
for a basis ṽ and n. We denote the matrix by SEv.

To define the principal edge curvatures, we let In−1,1

denote the n × n-matrix obtained from the identity
matix by changing the last entry to 0. For n × n-
matrices A and B, a generalized eigenvalue of (A, B)

Figure 9. Defining the edge shape operator. The dashed line denotes
projection onto Tx0 M ⊕ 〈n〉 along U .
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is a λ such that A − λB is singular. The principal edge
curvatures are defined to be the generalized eigenval-
ues Of (SEv, In−1,1).

Example 2.3. For a 1-dimensional Blum medial axis
M of an object in R

2, let γ (s) be a local edge
parametrization of M with say γ (0) = x0 ∈ ∂ M . Then,
we write

∂U1

∂s
= a · U1 − cn · n (2.4)

The edge shape operator is then multiplication by cn.
As I0,1 is the 1×1 0-matrix, provided cn 
= 0, there are
no principal edge curvatures. Which is not surprising as
the edge is 0-dimensional. The degenerate case would
correspond to cn = 0, in which case all values are
generalized eigenvalues. By Proposition 4.7 of Damon
(2003), the Blum medial axis satisfies the edge con-
dition (see Section 3), which implies that all positive
generalized eigenvalues are bounded from below by 1

r ,
a contradiction.

Example 2.4. For M a 2-dimensional Blum medial
axis of an object in R

3, we let X (u1, u2) be a local edge
parametrization of an open set W with X (0, 0) = x0 ∈
∂ M . We suppose X chosen so that if vi = ∂ X

∂ui
, i =

1, 2, then v1 ∈ Tx0∂ M and v2 maps under the edge
parametrization to c · U1 tan, for U1 tan the tangential
component of U1 and c ≥ 0. We write

∂U1

∂ui
= ai · U1 − cni · n − bi · v1 1 = l, 2 (2.5)

Then, the edge shape operator has the matrix represen-
tation

SEv =
(

b1 b2

cn1 cn2

)
(2.6)

When cn2 
= 0, the single principal edge curvature is
the generalized eigenvalue κE of (SEv, I1,1) which we
can compute as κE = c−1

n2 · det(SEv). We shall explain
in Proposition 3.7 how we may carry out computations
while avoiding the use of edge coordinates.

2.4. Conditions Implying the Smoothness
of the Boundary

Before stating how to use the radial and edge shape op-
erators to compute the differential geometric shape op-
erator, we first indicate a second important application

Figure 10. Singularities on a boundary associated to a skeletal
structure.

of these operators. In the case that (M, U ) is a skeletal
structure, we can still ask when the associated boundary
B is smooth. Figure 10 illustrates how the boundary as-
sociated to a skeletal structure may have singularities.
We describe how we may ensure the smoothness of the
associated boundary for general skeletal structures.

We define:

(1) (Radial Curvature Condition). For all points of M
off ∂ M
r < min{ 1

κri
} for all principal positive radial curva-

tures κri

(2) (Edge Condition). For all points of ∂ M
r < min{ 1

κEi
} for all positive principal edge curva-

tures κEi

(3) (Compatibility Condition). For all singular points
of M (which includes edge points), nU ≡ 0.

Then, the smoothness of the boundary is guaran-
teed by the following consequence of Damon (2003)
Theorem 2.3.

Theorem 2.5. Let (M, U ) be a skeletal structure
in R

2 or R
3 which satisfies: the Principal Curvature

Condition, Edge Condition, and Compatibility Condi-
tion. Then,

(i) For M in R
2, the associated boundary B is a C1

curve which is smooth at all points corresponding
to smooth points of M and which only has nonlocal
intersections from distant points in M. If there are
no nonlocal intersections then B is an embedded
curve.

(ii) For M in R
3:

(1) the associated boundary B is an immersed sur-
face which is smooth at all points except pos-
sibly at those corresponding to points of Msing.
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(2) At points corresponding to points of Msing,B is
weakly C1, which means that it has a well de-
fined limiting tangent space at such boundary
points (this implies that it is C1 except possibly
at edge closure points).

(3) Also, if there are no nonlocal intersections, B
will be an embedded surface.

For both cases, at smooth points, the projection
along the lines of U will locally map B diffeomor-
phically onto the smooth part of M.

Remark 2.6. In the case (M, U ) is a Blum medial axis,
Proposition 4.7 and Lemma 6.1 of Damon (2003) im-
ply that (M, U ) satisfies the radial curvature and edge
conditions. Also, the compatibility condition will be
satisfied at all points of M .

We also note that the radial curvature and edge condi-
tions relate the pure radial distance information given
by r with the pure radial direction information com-
puted from U1 (and in the Blum case the distance and
direction properties are further related by the compat-
ibility condition holding on all of M).

Example 2.7. For a 1-dimensional Blum medial axis
M (or more generally a skeletal structure), by Example
2.1, the radial curvature condition becomes:

r <
1

κr
if κr > 0, and no condition otherwise.

The edge condition reduces to cn 
= 0 (otherwise all
values are generalized eigenvalues). Finally, if γ (s) is
a unit speed parametrization of a smooth component
of M with say γ (0) = x0 ∈ M , then the compati-
bility condition becomes U1 · γ

′
(0) + ∂r

∂s = 0. As x0

approaches an edge point, the compatibility condition
has limiting form 1 + ∂r

∂s = 0, which is a well-known
property of the Blum medial axis. Here there is the
proviso that the meaning of the derivative ∂r

∂s has to be
reinterpreted using edge coordinates.

Example 2.8. For a 2-dimensional Blum medial axis
M , by Example 2.2, the radial curvature condition be-
comes:

r < min

{
1

κri

}
for those κri > 0 i = 1, 2.

The edge condition becomes by Example 2.4, for κE =
c−1

n2 · det(SEv)

r <
1

κE
if κE > 0 otherwise no condition.

For example, if both κri < 0 then as we see in
Section 4, the boundary is convex and there is no condi-
tion. If instead both κri > 0 then (by Section 4) the bou-
ndary is concave and both κri place restrictions on r .

3. Intrinsic Differential Geometry of the
Boundary

3.1. Differential Geometric Shape Operator in
terms of the Radial Shape Operator

We begin by expressing the differential geometric
shape operator for the boundary B at a boundary point
x ′

0 ∈ B associated to a non-edge point x0 ∈ M . We
let v′ be the image under the radial map dψ1 of a ba-
sis v = {v1, . . . , vn } of Tx0 M (or for Tx0 Mα in case
x0 ∈ Msing, where the value of U extends smoothly to
the smooth sheet Mα). We can apply Theorem 3.2 of
Damon to the special case of Blum medial axes.

Theorem 3.1. Suppose (M, U ) is a Blum medial axis
with radial vector field. Let x ′

0 ∈ B correspond to the
non-edge point x0 ∈ M as in the preceding situation.

(1) The differential geometric shape operator SB of B
at x ′

0 has a matrix representation with respect to v′

given by

S′
Bv = (I − r · Sv)−1Sv (3.1)

(2) There is a bijection between the principal curva-
tures κi of B at x ′

0 and the principal radial curva-
tures κri of M at x0 (counted with multiplicities)
given by

κi = κri

1 − rκri
or equivalently κri = κi

(1 − rκi )
(3.2)

(3) The principal radial directions corresponding to
κri are mapped by dψ1 to the principal directions
corresponding to κi .

Remark. A simpler way to express (3.2) is in terms
of the signed radii of curvatures and radial curvatures,
see Section 5. This alternate form immediately reveals
the “relative nature” of comparing principal curvatures
at distinct points using the relations (3.2).

Example 3.2. For a 1D Blum medial axis, we obtain
that the curvature for the boundary curve B at a point
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which corresponds to a non-edge point (and particular
value of U ) is given by

κ = κr

1 − rκr

Example 3.3. For a 2D Blum medial axis, the bound-
ary points corresponding to edge points of M are crest
points. For a non-crest point x ′

0 corresponding to a non-
edge point x0, we compute Sv as in (2.3) by the 2 ×
2-matrix (bi j ). We obtain the principal radial curvatures
and directions from the eigenvalues and eigenvectors
of Sv. Then, we obtain the principal curvatures of B
by applying (3.2), and the principal directions by ap-
plying dψ1 to the eigenvectors. Finally, we obtain the
matrix representation SBv′ for the differential geomet-
ric shape operator by (3.1). In doing this, we determine
the differential geometry using what is essentially the
minimal amount of medial information possible (see
also Section 6).

We also note that from SBv′ we can easily compute
the Second Fundamental Form II (v′

i , v
′
j ) = v′

i · SB(v′
j ).

A matrix representation of II with respect to the basis
v′ is given by G · SBv′ where G = (gi j ) is given by the
metric on B by gi j = v′

i · v′
j · G can be computed using

dψi by Damon (2003), Section 4. However, it follows
from the formula (3.1) that shape operators give the
most direct relation between the differential geometry
of B and medial data.

Next, we consider how the differential geometric
shape operator at a crest point x ′

0 on B (correspond-
ing to an edge point x0 can be determined from the
edge shape operator. For a special basis v at x0 with
corresponding basis v′, we may apply [Damon (2004),
Corollary 3.6].

Theorem 3.4. Suppose (M, U ) is a Blum medial axis
and radial vector field of a region with smooth bound-
ary. For a crest point x ′

0 on B corresponding to an edge
point x0 as above, the differential geometric shape op-
erator for B at x ′

0 has a matrix representation with re-
spect to v′ given in terms of the edge shape operator by

SBv′ = (In−1,1 − r · SEv)−1SEv (3.3)

Hence, the principal curvatures κi and principal direc-
tions of B at x ′

0 are the eigenvalues and eigendirections
(after identification by dψ1) of the RHS of (3.3).

Example 3.5. For a 1D Blum medial axis, at a point of
the boundary curve B corresponding to an edge point,

we obtain from (3.3) that

κ = (0 − rcn)−1cn = −1

r
.

This is the curvature of the osculating circle of radius
r (with minus sign resulting from an outward pointing
normal vector).

Example 3.6. For a 2D Blum medial axis, at a crest
point of the boundary surface B, we computed the
edge shape operator in Example 2.4. Thus, by (3.3)
we compute the differential geometric shape operator.
Let KE = det(SEv). Then,

SBv′ =
(

1 − rb1 −rb2

−rcn1 −rcn2

)−1 (
b1 b2

cn1 cn2

)

=
( KE

cn2−r KE
0

cn1
r (r KE −cn1) − 1

r

)
(3.4)

Hence, we see that

the principal curvatures are: − 1

r
and

KE

cn2 − r KE

(3.5)

We note the special case where ∂U1
∂v1

is orthogonal to
n. This implies cn1 = 0, so in (3.4) KE = b1cn2. Then,
by (3.4), SBv′ becomes diagonal with eigenvalues 1

1
b1

−r
and − 1

r .
To compute the differential geometric shape operator

at a crest point, we must use edge coordinates, which we
are not a priori given. A way around this is to compute
SBv′ as a limiting value. We let v1 be a smooth vector
field on a neighborhood W of the edge point x0 which is
tangent to ∂ M . Here smoothness is only in the sense of a
surface with edge. We also let v2 = U1 tan the tangential
component of U1. Then, both U1 tan and v1 are smooth
for edge coordinates. Then, we can compute at smooth
points x ∈ W near x0, a related operator S′

E extending
SE as follows.

S′
E (v) = −proj′′U

(
∂U1

∂v

)
(3.6)

where now proj′′U denotes projection along U but onto
L , the subspace spanned by {v1, n}. Then, we apply
Proposition 3.9 of Damon (2004) to conclude.
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Proposition 3.7. In the preceding situation SBv′ the
differential geometric shape operator at a crest point
x ′

0,with respect to the basis v′ associated to v is given by

SBv′ = lim
x→x0

(I1,1 − r · S′
Ev) (3.7)

Hence, the principal curvatures at x ′
0 are the lim-

its as x → x0 of the eigenvalues of the RHS of
(3.7). Moreover, if the principal curvatures at x0 are
distinct, then the principal directions are the limits of
the eigendirections of the RHS of (3.7) as x → x0.

Although computationally we cannot really take a
limit as in Proposition 3.7, by choosing x sufficiently
close to x0, we can compute the RHS of (3.7) to de-
termine good approximations to both the eigenvectors
and eigenvalues for the crest point x ′

0.

3.2. Geometry in the Non-Blum Case

To express the differential geometric shape operator of
the boundary in the non-Blum case requires in addition
to Srad both ηU and its first derivatives. We do not ex-
plicitly give the formula here. However, suppose that
(M, U ) is “almost Blum” , which means that although
ηU is not identically zero on M , both ηU and its first
derivatives are small. For the Blum case, ηU ≡ 0 on
the smooth points. This doesn’t hold exactly in concrete
situations; however, if ηU is close to zero then U1 will
be approximately the normal vector. If in addition, the
derivatives of ηU are small then the variation of U1 will
closely approximate the variation of the normal vector
to the boundary. Then, the formulas in Theorems 3.1
and 3.4 will approximately give the correct differential
geometric shape operator. Hence, since Srad is as easy
to compute in the non-Blum case as in the Blum case,
we are able to approximately determine the geometry
of the boundary in the “almost Blum case”. We shall
see in the next sections this has further consequences
for constructing a geometric medial map in the almost
Blum case which approximately determines the intrin-
sic and relative geometry of the associated boundary.

4. Intrinsic Part of the Geometric Medial Map

In the preceding section, we explicitly expressed the
differential geometric shape operator in terms of the
radial or edge shape operators by formulas which also
involved r . We go further in this section to construct the
portion of the geometric medial map which is defined

solely in terms of the radial shape operator to construct
geometric objects on the medial axis which correspond
under the radial map to the corresponding objects for
the differential geometry of the associated boundaryB.

In light of the results from the preceding section, it
is sufficient to establish the following.

Lemma 4.1. Suppose (M, U ) is a Blum medial axis
of a region � with smooth boundary B. Let x0 ∈ M be
a smooth point with associated point x ′

0 ∈ B. Under the
correspondence (3.2), the principal radial curvatures
at x0 have the same sign as the corresponding principal
curvatures at x ′

0 and one is zero iff the other is.

Proof: By Proposition 4.7 of Damon (2003), (M, U )
satisfies the radial curvature condition at all smooth
points of M . Thus, r < min{ 1

κri
} for all κri > 0. First,

from (3.2) it immediately follows that κri = 0 iff κi =
0.

Second, if both are nonzero, suppose first κri < 0.
Then, 1 − rκri > 0; and hence by (3.2) κi < 0. If
instead κri > 0, then by the radial curvature condition
1 − rκri > 0 so by (3.2) κi > 0.

Given the Blum medial axis M of a region � with
smooth boundary B, we can use Srad to define on Mreg

the “radial analogues” of the corresponding objects for
classical differential geometry of surfaces. For exam-
ple, Kr = det(Srad) is the radial curvature; the curve
where det(Srad) = 0 is the radial parabolic curve; etc.
Define the intrinsic part of the geometric medial map
to consist of the radial versions of geometric objects
given in the left hand column of Table 1. Then the re-
lation between the two columns of Table 1 is provided
by the radial map ψ1.

Table 1. Intrinsic part of geometric medial map.

Radial shape operator
ψ1⇐⇒ Differential geometry

of boundary

Relation between geometric medial map and
differential geometry of the boundary

(i) Regions of positive (i) Regions of positive (negative)

(negative) radial curvature Gaussian curvature

(ii) Parabolic radial curves (ii) Parabolic curves

(iii) Radial umbilic points (iii) Umbilic points

(iv) Signs of principal radial (iv) Signs of principal
curvatures curvatures

(v) Principal radial directions (v) Principal directions

(vi) Principal radial curves (vi) Principal curves
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Theorem 4.2. For the Blum medial axis (M, U ) of
a region � with smooth boundary B, the radial map
sends the radial objects in the geometric medial map
(in the first column of Table 1) to the corresponding dif-
ferential geometric objects for B in the second column
of Table 1.

Proof: First, by Lemma 4.1, the sign of a principal
curvature κi agrees with that of the corresponding prin-
cipal radial curvatureκri ; andκr = 0 iffκri = 0. Hence,
for a point x ′

0 ∈ B which corresponds to x0 ∈ Mreg via
the radial map, any property at x ′

0 which can be given
in terms of the signs of the principal curvatures can
be expressed in terms of the same conditions for the
signs of the corresponding principal radial curvatures.
In particular the correspondence in Table 1 involving
(i), (ii) and (iv) follows. For (iii) we use the formulas
in (3.2) relating κi and κri . Since the same r is used at
a point, κ1 = κ2 iff κr1 = κr2.

Lastly, by Theorem 3.1, dψ1 sends the principal ra-
dial directions to principal directions giving v), and
hence a principal radial curve will map by ψ1 to a curve
whose tangent lines are principal directions, and so is
a principal curve.

In Fig. 11, we see that distinct properties of bound-
aries can be detected by the intrinsic part of the geo-
metric medial map.

5. Intrinsic versus Relative Geometry of the
Boundary

To understand the role of r for the relative geometry
of the boundary B,we begin by considering how we
compare the values of principal curvatures at differ-
ent points of B in terms of medial data. To compare
their values, we consider the signed radii of curvature
ri

def= 1
κi

and the corresponding signed radii of radial
curvature rri

def= 1
κri

. We note that in terms of the signed
curvatures, (3.2) can be rewritten in the following

Figure 11. Illustrating geometric medial maps capturing distinct properties of boundaries (in this case regions where gaussian curvature changes
sign).

radii of curvature equation:

rri = r + ri for all i (5.1)

We next see this gives us an immediate comparison
of principal curvatures at distinct points in terms of
medial data. Consider two points x ′

0 and x ′
1 in B which

correspond to points x0, x1 ∈ Mreg and a smooth value
of U defined at both points (so x ′

0 and x ′
1 lie on the same

side of the smooth sheet of M). We let κi be a principal
curvature at x ′

0 with κri the corresponding principal
radial curvature at x0 and let r be the radial function. For
x ′

1 we add primes to denote the corresponding objects,
e.g. κ ′

i will be the corresponding principal curvature at
x ′

1, etc. To compare κi and κ ′
i , we suppose they have

the same sign (otherwise we can use Theorem 4.2 to
distinguish which is larger).

Proposition 5.1. If κi and κ ′
i have the same sign, then

κi < κ ′
i iff r − 1

κri
< r ′ − 1

κ ′
ri

(5.2)

In particular, if κri < κ ′
ri and r ≤ r ′, then κi < κ ′

i .

Proof: Let ri and r ′
i denote the corresponding signed

radii of curvatures. As κi and κ ′
i have the same sign,

κi < κ ′
i iff ri > r ′

i . Then, by (5.1), this is equivalent
to rri − r > r ′

ri − r ′, and hence to r − 1
κri

< r ′ − 1
κ ′

ri
.

Thus, if κri < κ ′
ri then 1

κri
> 1

κ ′
ri

. Together with r ≤ r ′,
this implies the right hand inequality in (5.2).

A second consequence of (5.1) is to identify critical
points of κi along curves in B. A critical point x ′

0 of
κi along a curve γ1(s) is also a critical point for ri

(provided κi 
= 0). Suppose γ1 is the image of γ under
ψ1 with x ′

0 = ψ1(x0) Then, by (5.1), ∂ri
∂s = 0 iff ∂rri

∂s =
∂r
∂s . Thus, we summarize.

Corollary 5.2. In the preceding situation, a critical
point x ′

0 = ψ(x0) of κi along a curve γ1 = ψ ◦ γ

corresponds to the point x0 where ∂rri
∂s = ∂r

∂s .
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The preceding is relevant for various “ridges of prin-
cipal curvature” considered by Bruce et al. (1996). One
such is the crest curve, which corresponds to the edge
of the medial axis. However, there are other ridge-type
curves and these can be identified from medial data us-
ing the principal radial curvatures and radial function.
As explained in Bruce et al. (1996), these ridge-type
curves concern the geometry of B as an embedded sur-
face. This is distinct from the relative geometry of B as
the boundary of an object. We next introduce a method
for analyzing this geometry.

Remark 5.3. Suppose (M, U ) is partially Blum sat-
isfying the radial, edge, and compatibility conditions.
The associated boundary will be smooth in the sense
of Theorem 2.5. The spheres of radius r at points M
will be tangent to the associated boundary; however,
they may not lie entirely in the region. As observed by
Tom Fletcher, we may ensure the spheres are within
the boundary, at least locally in a neighborhood of the
points of tangency, by requiring that r < |ri | for all
principal radii ri < 0. We claim this is guaranteed by
the radial curvature condition together with the radii
of curvature equation (5.1). To see this we note that if
ri < 0, then by (5.1) r < |ri | iff rri < 0. However, if
rri > 0, then by Lemma 4.1, rri > 0, a contradiction.

6. Relative Geometry of the Boundary via
Relative Critical Sets

We saw in the previous section that r plays an important
role in the relative geometry of the boundary when we
compare geometry at distinct points of the boundary in
terms of medial data. We now turn more generally to
the relative geometry as captured by properties of r on
the medial axis. To capture such relative geometry we
use the “relative critical set of r”.

We first recall how the relative critical set captures
geometry of a function f on R

2, and then explain how
it extends to r on the medial axis.

6.1. Relative Critical Sets on R
2

Consider a smooth function f : W → R, for W an
open subset of R

2. For a point x0 ∈ W , let λ1 < λ2

denote the eigenvalues of the Hessian H ( f )(x0), with
eigenvectors e1 and e2. First, x0 is called a (height) ridge
point of f if ∇ f (x0) is orthogonal to e1 and λ1 < 0.
The (height) ridge, which we henceforth call the ridge

of f , is the set of (height) ridge points of f . A ridge
curve represents the points along which the function
is decreasing most rapidly in the directions orthogonal
to the gradient direction. It was introduce by Pizer and
Eberly to investigate properties of gray-scale “medial
functions” (Pizer et al., 1998; Eberly, 1996). The ridge
will generally consist of pieces of smooth curves. These
curves carry information about the graph of f , viewed
as a surface, but where the direction of the dependent
variable remains distinguished.

However, the ridge curves consist of disjoint pieces
without any structure to relate them. This is because
they are only part of the complete structure needed to
reveal the full geometry of f . This structure is called
the relative critical set of f. We consider in addition to
the ridge set the following sets of points consisting of
those x0 which are:

1. valley points for which ∇ f (x0) is orthogonal to e2

and λ2 > 0,
2. r-connector points for which ∇ f (x0) is orthogonal

to e1 and λ1 > 0, and
3. v-connector points for which ∇ f (x0) is orthogonal

to e2 and λ2 < 0.

Then, the relative critical set, denoted RC( f ) is the
closure of the four ridge, valley, r -connector, and v-
connector sets. In addition, it contains: critical points,
singular Hessian points (where one of the λi = 0), and
(partial) umbilic points (where λ1 = λ2). For higher
dimensions one can analogously define relative criti-
cal sets, except they become increasingly more varied
as the dimension increases (see Damon, 1998, 1999;
Miller, 1998; Keller, 1999). As an example of a rela-
tive critical set for a function, see Fig. 12 which exhibits
ridge and valley curves and v-connector curves.

Remark 6.1. For generic f on R
2, the relative critical

set has the following generic properties: each of the
four types form smooth curves; these curves only cross
at critical points which are nondegenerate; the types of
curves which can cross are determined by the type of
the critical point (see Fig. 13); the curves can change
from one type to another as they pass through singular
Hessian or (partial) umbilic points; and the specific
changes are uniquely determined (see Fig. 14). This
network of curves does not end (as e.g. Blum medial
axes do) but continues to the end of the open set.

Furthermore, they satisfy stability properties un-
der perturbation of f (Damon, 1998) and generic
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Figure 12. Graph of a function, with the relative critical set exhibiting ridge, valley, and v-connector curves, with the corresponding curves on
the graph.

Figure 13. Crossings of relative critical set curves at critical points.

Figure 14. Changing type for relative critical set at singular Hessian
and (partial) Umbilic points.

transitions which can occur in one parameter families
are also determined (Damon, 1998; Keller, 1999).

6.2. Relative Critical Sets for Functions on Surfaces

We wish to extend the preceding to r on the medial
axis. As an intermediate step, we consider a function
f : N → R where N is a smooth surface (in R

3).
N is a special case of a Riemannian manifold and the
dot product on the tangent space of N is denoted 〈, 〉.
Eberly (1996) used generalized eigenvalues and tensor
index notation to define the (height) ridge of f on any
Riemannian manifold. We are going to give a formula-
tion of the relative critical set for f which for the ridge
part will be equivalent to that given by Eberly.

We let ∇ f be the Riemannian gradient so that
< ∇ f, v >= d f (v). Then, ∇ f is a vector field
on N which is orthogonal to the level curves of f
on N . Also, the Riemannian Hessian is defined by
H ( f )(v, w)

def= < ∇v(∇ f ), w >. Here “∇v” denotes
the covariant derivative of the vector field ∇ f (we
note that ∇v X (x0) = projn( ∂ X

∂v
) for a vector field

X, where projn denotes orthogonal projection onto
TX0 N ). By properties of the covariant derivative, H ( f )
is symmetric in v and w. We define the Hessian
operator H f : Tx0 N → Tx0 N by H f (v) = ∇v(∇ f ). As
< H f (v), w >= H ( f )(v, w), it follows that H f is
self-adjoint, and so it has real eigenvalues, and the
eigenvectors for distinct values are orthogonal.

We again let λ1 < λ2 denote the eigenvalues of the
Hessian operator H f at x0, with eigenvectors e1 and
e2. Then, we repeat the definition for ridge, valley, r -
connector, and v-connector sets. It is shown in Damon
(in preparation) that the same generic properties for
functions on R

2 which we listed in Remark 6.1 continue
to hold for generic smooth functions on a given smooth
surface N . This brings us to the case of r on the medial
axis M.

6.3. Relative Geometry in the Non-Blum Case

If (M, U ) is a general skeletal structure, then M is a
stratified set. We can consider the relative critical set of
r on Mreg. In the general case r need not be the same for
each side of M . Hence, for each side of each smooth
sheet of Mreg, the relative critical setRC(r ) is a network
of curves which generically will have the properties in
Remark 6.1. Here by genericity, we mean that given a
compact subset C of Mreg there is an open dense set
of smooth functions on M, for which the relative criti-
cal sets exhibit the generic properties on C. Genericity
holds even for skeletal structures (M, U ) satisfying the
radial curvature, edge and compatibility conditions, as
will follow from Theorem 6.4. The ridge curve will be
a ridge of thickness; the valley curve will be a valley
of thinness. Along the r -connector curve, the gradient
points in the direction of “greatest increase”; and along
the v-connector curve, the gradient points in the direc-
tion of “greatest decrease”. Without the compatibility
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condition on all of M there is no real condition on U1.
This is remedied in the Blum case.

6.4. Relative Part of the Geometric Medial Map
on the Blum Medial Axis

We now consider a Blum medial axis M and radial vec-
tor field (M, U ) for a region � with smooth boundary
B. M will still in general be a stratified set instead of
a smooth surface. The compatibility condition places
restrictions on r so it is not an arbitrary function even
on Mreg. We need to deal with both of these questions
as well as use the compatibility condition to give more
explicit criteria for belonging to the various parts of the
relative critical set.

First by the compatibility condition, ∇r = −U1 tan,
the tangential component of U1. Thus, the Hessian op-
erator for r takes the form Hr (v) = −∇vU1 tan. Thus,
∇r = −U1 tan being orthogonal to an eigenvector ei is
equivalent to U1 tan being an eigenvector (a multiple of
e j ), with eigenvalue λ(= λ j ) for Hr . Hence we have
the following description of the relative critical set of
r on Mreg using only U1 tan.

Proposition 6.2. Suppose (M, U ) is a Blum medial
axis and radial vector field for a region with smooth
boundary B. The relative critical set of r on Mreg con-
sists of those x0 ∈ Mreg such that

−∇U1 tan (U1 tan) = λ · U1 tan (6.1)

If µ is the other eigenvalue of Hr (v) = −∇vU1 tan,

then the different types of points are characterized as
follows:

(1) for ridge points µ < 0 and µ < λ;
(2) for valley points µ > 0 and µ > λ;
(3) for r-connector points µ > 0 and µ < λ; and
(4) for v-connector points µ < 0 and µ > λ.

The earlier Fig. 4 illustrates the relative critical set
of the radial function on the Blum medial axis.

To state what genericity means in this case, we con-
sider Blum medial axes and radial vector fields (M, U )
with M fixed.

Definition 6.3. By a multivalued vector field U (and
r ) being allowable for M we mean that (M, U ) is a
Blum medial axis of a region with smooth boundary.

Then, by genericity of a property for Blum medial
axes, we mean that for a fixed M , given a compact sub-
set C of Mreg, there is an open dense subset of allowable
U such that (M, U ) exhibits the property on C .

We then can state the genericity of properties of the
relative critical set of r for Blum medial axes.

Theorem 6.4. For Blum medial axes, the relative
critical set of a generic r possesses the same generic
properties (on a compact subset C of Mreg) as functions
on R

2.

Remark. Since for genericity we may choose as large
a compact subset of Mreg as we desire, the conditions
will hold off as small a neighborhood of Msing as we
wish. The argument we give will also apply to a skeletal
set (possibly satisfying the three conditions). With a
more careful analysis it should be possible to state a
form of genericity which holds on all of M.

Proof: Given the compact subset C ⊂ Mreg, we may
choose an open neighborhood W of C in Mreg. Then,
given U , and hence r , we can vary r to r ′ within a
C2 neighborhood of r on C and unchanged outside a
compact subset of W containing C . Then, as (M, U )
is a Blum medial axis, the original r satisfies the ra-
dial curvature conditions on W . Given the perturbed
r ′, an associated radial vector field U ′ is determined by
U ′

1 tan = −∇r ′ and ||U ′
1|| = 1 with U ′ pointing on each

side of W.

First, as r ′ = r off a compact subset of W , all
conditions are satisfied off this compact subset. On
W , by construction U ′ satisfies the compatibility
condition.

Also, for r ′ sufficient close to r in the C2 sense,
then U ′ will satisfy the (open) radial curvature condi-
tion on W. Thus, all conditions for smoothness of the
boundary are satisfied and because the original bound-
ary was smooth, the new boundary will be smooth
in a neighborhood of the image of Msing, as it re-
mains unchanged. Finally, for r ′ sufficiently close to
r, the radial map remains one–one. Thus, the pertur-
bation r ′ corresponds to a Blum medial axis (M, U ′)
of a region with smooth boundary. Then, as we vary r
within the C2 neighborhood, we obtain a relative criti-
cal set with generic properties on C for an open dense
subset of this C2 neighborhood. This establishes the
genericity.
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7. Radial versus Differential Geometry
of the Medial Axis

We contrast the results on the geometry of the bound-
ary we have obtained in earlier sections using the radial
shape operator with the possible alternate approach us-
ing the differential geometry of the medial axis. As
already mentioned the results previously obtained ac-
tually apply to the geometry of parallel surfaces of
the boundary. One way to actually obtain results about
the boundary itself would be to give a relation between
the radial shape operator Srad with the differential ge-
ometric shape operator Smed for the medial axis (at
smooth points). As the derivatives of r must enter into
any such relation, it is not surprising that the radial
Hessian operator is involved. There is yet one other
operator which must be included in the relation. We let
U1 = ρn + U1 tan denote the decomposition of U1 into
normal and tangential components. Then, we define

Z (v) = ρ−l

(
∂U1

∂v
· n

)
U1 tan (7.1)

Z does not have an obvious geometric meaning. Also,
in contrast to Smed and Hr , Z need not be self–
adjoint. However, Z as well as Hr enter into the re-
lation between the radial and the differential geometric
shape operators for the medial axis (see Damon, 2004,
Proposition 4.1).

Proposition 7.1. Let (M, U ) be a the Blum medial
axis and radial vector field for a region with smooth
boundary in R

n+l . Then,

Srad = ρ · Smed + Hr + Z . (7.2)

If we combine this proposition with Theorem 3.1, we
can express the differential geometric shape operator
of the boundary in terms of Smed by substituting the ex-
pression for Srad from (7.2) into (3.1). While the result-
ing expression will involve Hr as is expected, it will also
involve Z . Thus, barring some remarkable unexpected
identities, the representation in this form will be con-
siderably more complicated than that in terms of Srad.

Figure 15. Example of a diffeomorphism of a skeletal structure.

8. Effects of Diffeomorphisms of a Skeletal
Structures on the Smoothness and Geometry
of Associated Boundary

One of the goals proposed by Stephen Pizer is to be
able to perform operations on the medial axis and de-
termine the effect on the resulting associated boundary.
The approach we have developed only requires that the
the effect be determined on the radial and edge shape
operators and the compatibility 1-form. We demon-
strate how such effects can be computed in the case a
Blum medial axis is distorted or deformed by applying
a diffeomorphism to it, as in Fig. 15.

Let (M, U ) be the Blum medial axis and radial vector
field associated to a region � with smooth boundary B.
We let W denote some arbitrarily small neighborhood
of M , and let ϕ : W → R

n+1 denote a diffeomorphism
onto an open subset of R

n+1. We then obtain M ′ =
ϕ(M) and V = dϕ(U ). In general, (M ′, V ) is not the
Blum medial axis of a region. In fact, the associated
boundary B′ need not be smooth, nor even if it is, must
M ′ be the Blum medial axis of the region it bounds. It
is also not clear what new geometric properties B′ will
possess.

However, by the results we have described in ear-
lier sections, we can give an answer to the preceding
questions provided we can determine the radial and
edge shape operators and the compatibility 1-form of
(M ′, V ). We explain how to do this in terms of the me-
dial data of (M, U ) together with certain “distortion
operators”. In this the differentiable structure of the
medial axis does not change, but it should be possible
to eventually include the generic changes in the me-
dial axis using Bruce and Giblin (1986) and Bogaevski
(2002).

8.1. Effects of Diffeomorphisms on Compatibility
Conditions

We first describe the effects of ϕ on compatibility
conditions. In general there are not simple sufficient
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conditions to ensure that (M ′, V ) satisfy the compati-
bility conditions without a restriction on ϕ. We write
V = r1V1 where V1 is the unit radial vector field. Also,
we write V1 = σdϕ(U1). We refer to σ as the radial
scaling factor. We say that ϕ is radially rigid on M if
dϕ(U1) · dϕ(v) = U1 · v for all points in M and all
v ∈ R

n+1. It then follows that ||dϕ(U1)|| = ||U1|| so
σ ≡ 1 (and dσ ≡ 0).

For example, if U is a normal vector field on an open
subset of a smooth sheet of M , then the compatibility
condition implies that r is constant on that subset so that
portion of the boundary is a parallel surface (or curve in
the 1D case). Under a radially rigid diffeomorphism, V
will also be a constant length normal vector field on the
image of that region, and the new associated boundary
will also be a parallel surface (curve). However, other-
wise we are free to deform the shape of M (provided
the new boundary remains smooth).

The general relation is given by the following
Lemma (see Damon (2004), Lemma 4.3).

Lemma 8.1. If ϕ is radially rigid then, ϕ∗(ηV ) = ηU

(or alternately ϕ∗(ηU ) = (ηV ). Hence, if (M, U ) satis-
fies the compatibility condition, then so does (M ′, V ).

Thus, a condition such as radial rigidity is first
needed to ensure that (M ′, V ) satisfies the compatibil-
ity condition for being a Blum medial axis. However,
just to ensure that B′ is smooth, it is only necessary to
have the compatibility condition hold on M ′

sing which
will follow from radial rigidity on Msing (again see the
more detailed [Damon (to appear), Lemma 4.3]).

8.2. Radial and Edge Distortion Operators

To determine the effects of ϕ on the radial and edge
shape operators, we introduce corresponding distortion
operators. These involve the second derivative of ϕ.

8.2.1. Radial Distortion Operator. For a nonedge
point x0, we define the radial distortion operator Qϕ

for v ∈ Tx0 M by

Qϕ(v) = −dϕ−1(projV (d2ϕx0 (v, U1))) (8.1)

We give a matrix representation of this operator in the
1D and 2D cases.

Example 8.2 (Radial Distortion Operators for 1D and
2D Medial Axes). For a 1D medial axis M, let γ (s)

denote a parametrization of a smooth component of M
with say x0 = γ (0). Then, γ1 = ϕ ◦γ is a parametriza-
tion of M ′ near x ′

0 = ϕ(x0). We write

d2ϕx0 (γ ′(0), U1) = a1 · V1 − q · γ ′
1(0) (8.2)

Then, Qϕ is multiplication by q.

For a 2D medial axis M , let X (u1, u2) denote a
parametrization of a smooth component of M with say
x0 = X (0, 0). Then, X1(u1, u2) = ϕ ◦ X (u1, u2) is a
parametrization of M ′ near x ′

0 = ϕ(x0). As in Example
2.2, we let vi = ∂ X

∂ui
, i = 1, 2 denote a basis for Tx0 M

at each point x0 in the parametrized region. We write

d2ϕx0 (vi , U1) = ai · V1 − q1i · v′
1 − q2i · v′

2

i = 1, 2 (8.3)

where v′
i = dϕ(vi ) = ∂ X1

∂ui
. Then, Qϕv, the matrix rep-

resentation of Qϕ with respect to the basis v = {v1, v2}
is given by

Qϕv =
(

q11 q12

q21 q22

)
(8.4)

8.2.2. Edge Distortion Operators. Next, we consider
the effect of ϕ on edge shape operators. We really only
need consider the 2D case, for in the 1D case the radius
of curvature in the Blum case will be − 1

r1
. Let x0 be

an edge point (or we consider a local edge manifold
component for an edge closure point). We define the
edge distortion operator QE,ϕ by

QE,ϕ(v) = −dϕ−1(proj′v(d2ϕx0 (v, U1))) (8.5)

We give a matrix representation of this operator in the
2D case.

Example 8.3 (Edge Distortion Operators for 2D Medial
Axes). We let v1 be a smooth vector field tangent to
∂ M , and let v2 = U1 tan We again let v′

i = dϕ(vi ).
Then, we write

d2ϕx0 (vi , U1) = a′
i · V1 − ci · n − q̃i · v′

1

i = 1, 2 (8.6)

Then, the matrix representation QE ϕ,v of QE,ϕ is given
by

QE ϕ,v =
(

q̃1 q̃2

c1 c2

)
(8.7)
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In addition we must also take into account the failure
of dϕ to send n to n′ at edge points of M . We write

dϕx0 (n) = an · V1 + cn · n′ + bn · v′
1 (8.8)

Then, we define

Eϕ v =
(

cn1bn cn2bn

cn1(cn − 1) cn2(cn − 1)

)
(8.9)

where cni are defined in (2.5). We observe that if
dϕ(n) = n′, then cn = 1 and bn = 0 so Eϕ v = 0.

8.3. Radial and Edge Shape Operators for the Image

Although (M ′, V ) need not be a medial axis, the ra-
dial and edge shape operators are still defined. We can
compute them using the original operators for (M, U )
and the distortion operators (see Damon (2004),
Theorem 4.5).

Theorem 8.4. Suppose (M ′, V ) is the image of a 1D
or 2D medial axis (M, U ) under the local diffeomor-
phism ϕ. Then, with the preceding notation

(1) For a non-edge point x0 ∈ M, the radial shape
operator Sv′ at x ′

0 = ϕ(x0) (for the basis v′ from
the parametrization X1 = ϕ ◦ X ) is given by

Sv′ = σ (Sv + Qϕ v) (8.10)

(2) For a 2D medial axis and a point x0 ∈ ∂ M, we
may compute the edge shape operator SE v′ at x ′

0 =
ϕ(x0) by

SE v′ = σ (SE v + QE ϕ,v + Eϕ v) (8.11)

We give a corollary ensuring that the image (M ′, V )
satisfies the radial curvature and edge conditions. First,
if M is 1-dimensional then Qϕ v = (q), and by Exam-
ple 2.3 the edge condition reduces to ∂V1

∂s · n′ �= 0 If M
is 2-dimensional, we let bi , i = 1, 2 denote the eigen-
values of Sv + Qϕ v and d the generalized eigenvalue
of ((SEv + QE ϕ,v + Eϕ,v), I1,1). As in Example 2.4 we
compute

d = (c1 + cn1cn)−1det(SEv + QE ϕ, v + Eϕ,v)

Then, we have as a corollary

Corollary 8.5. Consider the situation of Theorem
8.4. If M is a 1D medial axis, then (M′, V ) satisfies the
Radial Curvature Condition iff at all non-edge points
of M

r <
1

κr + q
if κr + q > 0

and no condition otherwise (8.12)

If M is 2-dimensional, then (M′,V) satisfies the Radial
Curvature Condition iff at all non-edge points of M

r < min

{
1

bi

}
for all positive eigenvalues

bi o f Sv + Qϕ v (8.13)

Also, (M ′, V ) satisfies the Edge Condition iff at all
points of ∂ M,

r <
1

d
if d > 0 and no condition otherwise (8.14)

where d is the generalized eigenvalue of
((SEv + QE ϕ,v + Eϕ,v), I1,1)

Then, provided the image (M ′, V ) satisfies the lo-
cal initial conditions of Damon (2003), Definition 1.7,
then (M ′, V ) is a skeletal structure. We can first apply
Corollary 8.5 and radial rigidity at the singular points
to be able to apply Theorem 2.5 to conclude that the
boundary B′ is smooth. If moreover ϕ is radially rigid
on M , then B′ is (partially) Blum so we can apply The-
orem 8.4 together with Theorems 3.1, 3.4, and 4.2 to
determine the geometry of B′.

9. Summary

To use the Blum medial axis as a tool for analyzing the
shapes and properties of objects, it is desirable to be
able to perform operations on medial axes and deduce
properties of the resulting associated boundaries. In this
paper we have introduced medial structures, namely the
radial and edge shape operators and the compatibility
1-form, which allow us to determine that the associ-
ated boundary is smooth and then deduce its geometric
properties. These operators provide formulas for the
geometry of the boundary without explicitly using the
differential geometry of the medial axis. Several ad-
vantages of this approach are:
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(1) The methods are dimension independent.
(2) The expressions for the differential geometric in-

variants are directly defined on the medial axis.
(3) The invariants naturally decouple the radial dis-

tance r from the purely directional information
contained in the unit radial vector field U1.

(4) The expressions we obtain are simpler then those
obtained from other approaches, and we specifi-
cally justify this claim.

(5) Both intrinsic and relative geometric invariants can
be determined.

We further demonstrate the advantage of this ap-
proach by constructing on the medial axis a geometric
medial map using only the unit radial vector field. This
map has an intrinsic component which directly identi-
fies the intrinsic geometry of the boundary and a rela-
tive part which identifies the relative geometry of the
boundary. We illustrate the usefulness of the methods
by computing how the medial data changes when the
medial axis is deformed by a diffeomorphism. We iden-
tify distortion operators which determine how much the
shape operators are changed under the diffeomorphism.

These results have a number of potential applications
including: fitting boundary surfaces by medial models,
determining properties of deformed regions in terms
of deformation properties of the medial axis, identify-
ing special boundary regions in terms of medial data,
etc. Optimality criteria for such problems are often ex-
pressed by global integrals. Hence, the radial shape
operator again appears via the methods in Damon (for
Publication) for computing such integrals as related in-
tegrals over the medial axis.
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