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Abstract. We consider the conditions on a local stratification V which ensure

that the local singularity theory in the sense of Thom-Mather, such as finite
determinacy, versal unfolding, and classification theorems and their topological

versions apply either to mappings on the stratified set V or for an equivalence

of mappings which preserve V in source or target for any of the categories:
complex analytic, real analytic, or smooth. For such a stratification V, it is

sufficient that the equivalence group be a “geometric subgroup of A or K”,

and this reduces to the structure of the module Derlog(V) of germs of vector
fields on the ambient space which are tangent to V. In the holomorphic or

real analytic categories, with holomorphic, resp. real analytic stratifications,
we show the necessary conditions are satisfied.

However, in the smooth category the general question is open for smooth

stratifications. We introduce a restricted class of “semi-coherent”semianalytic
stratifications (V, 0) and semianalytic set germs (V, 0) (and their diffeomorphic

images). This notion generalizes Malgrange’s notion of “real coherence”for real

analytic sets. It is defined in terms of both Derlog(V) and I(V ) (the ideal of
smooth function germs vanishing on (V, 0)) being finitely generated modulo

infinitely flat vector fields, resp. functions. This class includes the special

semianalytic stratifications and sets in [DGH], and semianalytic sets such as
Maxwell sets, “medial axes/central sets”, and the discriminants of C∞-stable

germs in the nice dimensions. We further show that the equivalence groups in

the smooth category for these stratifications are then geometric subgroups of
A or K.

Introduction

For a stratification V of a germ (V, 0), we consider singularity theory in the
Thom-Mather sense for mappings f : kn, 0 → kp, 0 either on V or by an equivalence
preserving V. in any of the categories: holomorphic (with k = C), real analytic,
or smooth (for k = R). Traditionally, the main interests in stratifications V has
involved their properties and the consequences for equisingularity of varieties and
mappings as a result of the work of many people beginning with Whitney[Wh],
Thom [Th], Hironaka [H1, H2] Lojasiewicz [Lo], Mather [M1] and further built
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upon by David Trotman with his many coworkers and students, e.g. [Tr1, Tr2,
BTr, NTr, OTr, MPT, TrW], along with the important contributions by Verdier
[Ve], Mostowski [Ms], Hardt [Ht], and many others. By contrast, singularity theory
on a given stratified variety V has concentrated on the topological properties of V ,
either computed via stratified Morse functions on V , using Stratified Morse Theory
of Goresky-MacPherson [GM] or generic projections of Lê and Teissier [LeT].

For mappings on varieties (V, 0) or equivalences preserving varieties, singularity-
theoretic results have concerned: infinitesimal stability implies stability for a holo-
morphic germs on holomorphic (V, 0), Galligo [Ga]; finite determinacy modulo an
ideal (= I(V)), DuPlessis-Gaffney [DPG]; and the classification of function germs
under R-equivalence preserving a hypersurfaces (V, 0) in several specific cases,
Arnold [A] and Lyashko [Ly]. Also, a classification of low dimensional smooth
germs has been carried out with (V, 0) denoting either a smooth curve on a surface
(or surface with boundary) Bruce-Giblin [BG] and Goryunov [Go], or “creases and
corners” Tari [Ta1, Ta2].

These latter results fit into the general framework where for any of the three cat-
egories, a group of germs of diffeomorphisms of (kn, 0), denoted by Dn, is replaced
by a group DV which preserves a subspace V, 0 ⊂ kn, 0. In the holomorphic or real
analytic categories, (V, 0) can be the germ of any holomorphic, resp. real analytic
set germ. However, in the smooth category, the results have been limited to (V, 0)
which are smooth diffeomorphic images of real coherent analytic germs in the sense
of Malgrange [Mg]. Then, for example, for any of the standard equivalences in the
Thom-Mather sense, G = R, K, or A, we may replace the group of diffeomorphisms
in the source or target by the appropriate DV , and obtain the corresponding group
GV preserving V, 0 in the target, or V G preserving V, 0 in the source. Second, we
may further enlarge the equivalence group to yield equivalences G(V ) capturing
equivalence of germs on V, 0, and even allow both the variety V, 0 to vary along
with the mappings.

The basic theorems of singularity theory are valid for these equivalences, because
each of the groups GV , V G, or GV are “geometric subgroup of A or K”(with an
adequately ordered system of algebras) in the sense of Damon [D2]. All of the
four conditions to be such a group are naturally satisfied except for the tangent
space condition which requires that the tangent space TGe be finitely generated as
a module over the system of algebras (and in the smooth case this can be relaxed to
hold modulo infinitely flat vector fields, see [D1] and [D3, §8]). In the holomorphic
or real analytic categories, the tangent space Derlog(V ) = TDV,e (see §1) is finitely
generated over the appropriate ring of germs, and in the smooth category for real
coherent analytic germs (V, 0), this is true (modulo infinitely flat vector fields, by
[D1, Lemma 1.1]). As a consequence, the basic theorems of singularity theory
are valid for these equivalences including: the finite determinacy theorem, versal
unfolding theorem, and infinitesimal stability implies stability under deformations,
and classification theorems.

Here we address two questions. First, in a number of situations of interest we
wish to replace (V, 0) by a stratification (V, 0) of a set germ (V, 0) in the appro-
priate category; and furthermore, in the smooth category we would additionally
like to allow the stratification (V, 0) and the set germ (V, 0) to be semianalytic.
Several examples where these conditions play a role involve: discriminants of stable
germs, which in general are only (diffeomorphic to) semialgebraic sets; the Blum



SEMI-COHERENCE FOR SEMIANALYTIC SETS AND STRATIFICATIONS 3

medial axis (or central set) for generic smooth regions in Rn are locally diffeomor-
phic to semialgebraic sets, and in computer vision, the stratifications which are
needed to describe the geometric features of natural objects, and the refinements
of these stratifications resulting from shade and shadows requires the consideration
of semianalytic stratifications.

The first goal is to extend Malgrange’s notion of real coherence for real analytic
germs to a sufficently large class of semianalytic sets and stratifications. In the
smooth category, A real coherent germ (V, 0) in the sense of Malgrange has the
property that the ideal I(V ) of smooth germs vanishing on (V, 0) is finitely gener-
ated over the ring of smooth germs En by the generators of I(V )an, the ideal of real
analytic germs vanishing on (V, 0) (see [Mg, Chap. VI, Theorem 3.10]). However,
to be applicable to the equivalence groups described above, it was also necessary to
have that the module Derlog(V ) is finitely generated (modulo infinitely flat vector
fields in the smooth category). We ask if there is a generalization of Malgrange’s
notion of being real coherent which will apply to these semianalytic sets and strati-
fications? Secondly, is this generalization useful to establish that the corresponding
equivalence groups are geometric subgroups of A or K?

We shall give a positive answer to both of these questions. We introduce a
notion of semi-coherence for semianalytic sets and stratifications, which concerns
the finite generation of both the ideal I(V ) and Derlog(V ) (or the corresponding
ideals and modules for a stratification V) modulo infinitely flat vector fields. Be-
sides having several naturality properties, this notion includes the three classes of
semianalytic sets and stratifications described above, including the class of special
semianalytic sets and stratifications introduced in [DGH]; and it establishes that
the corresponding equivalence groups are geometric subgroups of A or K so that
the basic theorems of singularity theory are valid for smooth mappings under such
an equivalence preserving the stratification or for germs on the stratification. These
results are used in [DGH] for the classification of local features of images of objects
with geometric features inlcuding shade and shadows.

In §1 we recall Malgrange’s notion of being real coherent and give several ex-
amples due to Malgrange and Whitney of analytic sets which do not satisfy the
condition. Next, we introduce the more general notion of semi-coherence for semi-
analytic sets and explain how this condition includes the class of special semianalytic
sets introduced in [DGH]. We also prove that the class of weighted homogeneous
semianalytic germs are semi-coherent. This includes examples of analytic sets that
are not real coherent and in addition the discriminants of stable germs in the nice
dimensions. In §2, we extend the notion of semi-coherence to semianalytic stratifi-
cations and give several conditions that insure that a semianalytic stratification is
semi-coherent, including the class of special semianalytic stratifications in [DGH].
In §3, we briefly indicate how the the resulting equivalence groups satisfy the con-
ditions for being geometric subgroups. In §4, we give the proofs of several of the
results and indicated how the others follow by slightly modifying the proofs in
[DGH] for the special semianalytic stratifications.

1. Semi-coherent Semianalytic Sets

In this section we consider the smooth category, except we consider a semiana-
lytic set V, 0 ⊂ Rn, 0 with local analytic Zariski closure (Ṽ , 0). We will simultane-
ously consider both the rings of smooth germs En with maximal ideal denoted by
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mn, and real analytic germs An. We let θn denote the module of germs of smooth
vector fields on (Rn, 0). Then, we let I(V ) denote the ideal of smooth germs f ∈ En

which vanish on V in a neighborhood of 0, and Ian(V ) the corresponding ideal of
analytic germs. In general, it is not known when I(V ) is a finitely generated ideal
in En. Malgrange [Mg] introduced the notion of V being real coherent, which means
that there is a set of generators {g1, g2, . . . , gk} for Ian(V ) and a neighborhood U
of 0 on which they are defined so that for x ∈ U , the germs of the gi at x generate
the ideal of real analytic germs at x vanishing on (V, x). He then proves that for
such a real coherent analytic germ (V, 0), I(V ) = Ian(V ) · En, so in particular it is
finite generated [Mg].

We let Derlogan(Ṽ ) denote the module of real analytic vector fields ξ satisfying
ξ(Ian(Ṽ )) ⊂ Ian(Ṽ ). It is a finitely generated An-module. We let V denote the
canonical Whitney stratification of (V, 0). Then, we define

(1.1) Derlog(V ) = {ξ ∈ θn : ξ is tangent to the strata of V}

Remark 1.1. If ξ ∈ Derlog(V ) and g ∈ I(V ), then as g vanishes on the strata of
V, ξ(g) vanishes on the strata of V, and hence on (V, 0), so ξ(g) ∈ I(V ).

Moreover, if ξ is analytic and g ∈ Ian(Ṽ ), then again g vanishes on the strata
of V, so ξ(g) vanishes on (V, 0) and hence on its local analytic Zariski closure Ṽ so
ξ(g) ∈ Ian(Ṽ ) and ξ ∈ Derlogan(Ṽ ).

Also, if (V, 0) is real coherent in the sense of Malgrange, then by an argument
in [D1, §1], if ξ(I(V )) ⊂ I(V ), then ξ ∈ Derlog(V ) as defined in (1.1). Thus,
Derlog(V ) may be alternately be defined by the condition ξ(I(V )) ⊂ I(V ) as in
[D1, §1], except there the notation θV was used.

The notation Derlog(V ) is a variant of the notation introduced by Saito [Sa] for
the module of “logarithmic vector fields” for a complex hypersurface singularity
V, 0, reflecting the relation with logarithmic forms.

However, even for real coherent analytic germs it is generally unknown whether
Derlog(V ) is a finitely generated En module. A weaker result which is satisfactory
for many applications in singularity theory is the following ( see [D1, Lemma1.1]).

Proposition 1.2. If V, 0 ⊂ Rn, 0 is real coherent then

Derlog(V ) ≡ En{ζ1, . . . , ζr} mod m∞
n θn

where {ζ1, . . . , ζr} are a set of generators of Derlogan(V ).

Here m∞
n denotes the ideal of infinitely flat function germs.

By the result in [D3, §8], in the smooth category, for a real coherent analytic
germ V, 0 ⊂ Rn, we may replace Dn by DV in any standard group of equivalences
G and conclude they are geometric subgroups of A or K. However, this places an
excessive restriction even for real analytic (V, 0), and does not address the case of
semianalytic V, 0. We illustrate the issue with several examples due to Malgrange
and Whitney.

Example 1.3 (Malgrange Umbrellas). The following examples are generalizations
of that given by Malgrange in [Mg, Example after Def. 3.9, Chap. VI]. We consider
V, 0 ⊂ Rn+1, 0 defined by

xn+1 ·

(
n∑

i=1

x2
i

)
= f(x1, . . . , xn) ,
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where f is homogeneous of degree k ≥ 3. Then, the xn+1-axis lies in V and is an
isolated line, for if we consider any line xi = tbi for i = 1, . . . n, with some bi 6= 0,
then

xn+1 = tk2 ·
(
f(b1, . . . , bn)∑n

i=1 b
2
i

)
Also, (V, 0) is not real coherent as at a point x′ = (0, . . . , 0, x0,n+1) with x0,n+1 6= 0,
(V, x′) is locally defined by x1 = · · · = xn = 0, and is not generated by the single
generator

G = xn+1 ·

(
n∑

i=1

x2
i

)
− f(x1, . . . , xn).

If f(x1, . . . , xn) > 0 when some xi 6= 0, then we can remove the handle on the
negative xn+1-axis by adding the condition xn+1 ≥ 0 and obtaining a germ of a
semianalytic set whose Zariski closure is (V, 0).

Example 1.4 (Generalized Whitney Umbrellas). The standard Whitney umbrella
is the image V = D(F ) of the stable map germ F : R2, 0 → R3, 0, where (y1, y2, y3) =
F (x1, x2) = (x1, x1x2, x

2
2). It is semialgebraic with analytic Zariski closure Ṽ , 0 de-

fined by y2
2 = y3y

2
1 . It has a handle consisting of the y3 axis with y3 > 0. As for

the Malgrange umbrellas, (Ṽ , 0) is not real coherent.
More generally we can define “generalized Whitney umbrellas”as images of maps

F : Rn+1, 0 → Rn+2, 0 given by

(y1, . . . , yn+2) = F (x1, . . . , xn+1) = (x1, . . . , xn, xn+1 ·f(x1, . . . , xn, x
2
n+1), x

2
n+1)

where both f and f(x1, . . . , xn, 0) have isolated singularities. Such F are finitely A-
determined (see Mond [Mo] for the case n = 1); and such images are semialgebraic
with Zariski closure Ṽ defined by G = y2

n+1 − yn+2f(y1, . . . , yn, yn+1) = 0.
If f(x1, . . . , xn, x

2
n+1) is weighted homogeneous of weight c for positive weights

wt (xi) = bi > 0, then both F and G are weighted homogeneous (with wt (yi) = bi
for i ≤ n, wt (yn+1) = bn+1 + c and wt (yn+2) = bn+2 satisfying bn+2 = 2bn+1 + c.
In the case that f(x1, . . . , xn, 0) > 0 whenever some xi 6= 0, then Ṽ has a handle
consisting of the negative yn+2-axis. Again, it is not real coherent.

Next, we consider more generally V, 0 ⊂ Rn, 0 a closed semianalytic set in the
smooth category. We introduce a notion of (V, 0) being semi-coherent which extends
that of real coherence of Malgrange to closed semianalytic sets in a form which
makes it sufficient for many applications in singularity theory. For V, 0 ⊂ Rn, 0
which is closed and semianalytic, we let (Ṽ , 0) denote its local analytic Zariski
closure. We also define Derlog(V ) for a semianalytic set (V, 0) with canonical
Whitney stratification V, by (1.1). Then, we define

Definition 1.5. A closed semianalytic set germ V, 0 ⊂ Rn, 0 will be said to be
semi-coherent in the smooth category if the following two conditions are satisfied.

i) I(V ) ≡ En{g1, . . . gs} mod m∞
n ,

where {g1, . . . gs} generate Ian(Ṽ ); and

ii) Derlog(V ) ≡ En{ζ1, . . . , ζr} mod m∞
n θn

where {ζ1, . . . , ζr} are a set of germs in Derlogan(Ṽ ) which are tangent
to the strata of V.
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Here m∞
n denotes the ideal of infinitely flat smooth germs.

More generally a germ V, 0 ⊂ Rn, 0 is semi-coherent if there is a germ of a
smooth diffeomorphism ϕ : Rn, 0 → Rn, 0 and a semi-coherent semianalytic set
V ′, 0 ⊂ Rn, 0 such that ϕ(V ′) = V . We shall refer to the semi-coherent semianalytic
set (V ′, 0) as the semianalytic model for (V, 0).

It follows by the same argument in [D3, §8], that V, 0 ⊂ Rn, 0 being semi-coherent
is sufficient to be able to conclude the unfolding and determinacy theorems and their
consequences are valid for the equivalence groups in the smooth category preserve
(V, 0) or for equivalences of smooth germs on (V, 0) (see also §3).

By the result of Malgrange and Proposition 1.2, real coherent analytic germs
(V, 0) are semi-coherent. A recent result Damon-Giblin-Haslinger [DGH] identifies
a class of special semianalytic germs which are semi-coherent. A semianalytic set
germ V, 0 ⊂ Rn, 0 is a special semianalytic germ if its Zariski analytic closure Ṽ , 0
is real coherent and it satisfies conditions i) and ii) in definition 1.5. This allowed
several important classes of semianalytic set germs which are semi-coherent to be
identified using a special semianalytic criteria to be described in §2. However, for
example, the discriminants of stable map germs and the classes of Malgrange and
Whitney and umbrellas cannot satisfy the criterion for being special semianalytic
set germs as their Zariski closures are not in general real coherent. This leads to
the question.

Basic Question: When are semianalytic sets semi-coherent?

We give two distinct types of criteria for a semianalytic set to be semicoherent.
The first simple criterion is given by the following.

Proposition 1.6. Let V, 0 ⊂ Rn, 0 be semianalytic with local analytic Zariski clo-
sure Ṽ , 0 ⊂ Rn, 0. Suppose that Ṽ , 0 is weighted homogeneous (for positive weights)
and that V is invariant under the corresponding R+-action. Then, V, 0 is semi-
coherent.

A consequence of Proposition 1.6 is that both the weighted homogeneous analytic
and semianalytic Malgrange and Whitney umbrellas are semi-coherent, even though
the analytic versions are not in general real coherent. Thus, the notion of semi-
coherence is a more general notion than real coherence for analytic set germs (V, 0).
There follows a basic consequence for discriminants of C∞ stable germs.

Theorem 1.7. Let f : Rn, 0 → Rp, 0 be a simple C∞ stable germ, which includes
those in the nice range of dimensions. Then the discriminant (D(f), 0) is semi-
coherent.

Proof of the Theorem. By Mather’s classfication theorems for such simple stable
germs (see [MIV], and [MVI]), f is A-equivalent to a polynomial germ g : Rn, 0 →
Rp, 0 which is weighted homogeneous of positive weights. Thus, there are germs of
diffeomorphisms ψ : Rn, 0 → Rn, 0 and ϕ : Rp, 0 → Rp, 0 so that f = ϕ ◦ g ◦ ψ.
Hence, ϕ(D(g)) = D(f), and it is sufficient to show that (D(g), 0) is semi-coherent.
However, as g is a polynomial mapping, it follows by the Tarski-Seidenberg theorem
that the image D(g) = g(Σ(g)) of the singular set Σ(g) is semialgebraic, so in
particular, semianalytic.
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Also, as g is weighted homogeneous for positive weights, so is the Zariski closure
D̃(g) (the complexification gC has discriminant D(gC) which is weighted homoge-
neous for positive weights, and D(gC)∩Rp is the Zariski closure of D(g)). Further-
more, if y0 = g(x0) ∈ D(g) with x0 ∈ Σ(g), then by the weighted homogeneity of g,
R+ · x0 ⊂ Σ(g) and g(R+ · x0) = R+ · y0, so R+ · y0 ⊂ D(g). Thus, by Proposition
1.6, (D(g), 0), and hence (D(f), 0), are semi-coherent. �

Next, we illustrate that even for the simplest semianalytic germs that the equali-
ties in Definition 1.5 are only true modulo infinitely flat functions and vector fields.

Example 1.8. Let V, 0 ⊂ Rn, 0 denote the model for a k-corner. It is defined by
f = 0 where f(x1, . . . , xk) =

∏k
i=1 xi and the inequalities xi ≥ 0 for i = 1, . . . , k.

Its local analytic Zariski closure Ṽ , 0 is the germ defined by f = 0. The module

Derlogan(V ) of germs of analytic vector fields tangent to V is generated by xi
∂

∂xi
,

i = 1, . . . , k and
∂

∂xj
, j = k + 1, . . . , n. We exhibit an infinitely flat smooth germ

g ∈ I(V ), but not in the ideal (f)·En, and infinitely flat smooth germs of vector fields

g
∂

∂xi
∈ Derlog(V ), i = 1, . . . , k, which are not in En{xi

∂

∂xi
, i = 1, . . . , k;

∂

∂xj
, j =

k + 1, . . . , n}.
Let ρ(x) be the infinitely flat germ

ρ(x) =

{
exp(− 1

x2 ) x < 0,
0 x ≥ 0

.

Let g(x1, . . . , xn) =
∑k

i=1 ρ(xi)2. Then, g vanishes on V . We claim it is not
smoothly divisible by xi for any i = 1, . . . , k. For example, if g were smoothly
divisible by x1, then as ρ(x1) is smoothly divisible by x1, so would be g− ρ(x1)2 =∑k

i=2 ρ(xi)2. However,
∑k

i=2 ρ(xi)2 is not smoothly divisible by x1. A similar
argument works for not being smoothly divisible xi for i = 2, . . . , k. Thus, g /∈
(f) · En. Also, if g

∂

∂x1
∈ En{xi

∂

∂xi
, i = 1, . . . , k;

∂

∂xj
, j = k + 1, . . . , n}, then

g
∂

∂x1
= h ·x1

∂

∂x1
. This would imply x1 smoothly divides g, which, as we just saw,

is impossible. There is an analogous argument for i = 2, . . . , k.
We note that we could replace ρ by any infinitely flat function which vanishes

for x ≥ 0 but not identically on R. Also, an analogous argument would work for
more general semianalytic sets involving more than one inequality.

There is a second criterion, the special semianalytic criterion given in [DGH],
which applies to semianalytic sets that are not necessarily weighted homogeneous
and will yield special semianalytic stratifications. We describe it in §2.

There are also further properties of both semicoherent semianalytic sets and the
special semianalytic sets. However, these properties are best described for the more
general notion of semi-coherent semianalytic stratifications to be introduced next.

2. Semi-coherent Semianalytic Stratifications

Let V, 0 ⊂ Rn, 0 be a germ of a closed semianalytic set, and let Ṽ , 0 ⊂ Rn, 0
be its real local analytic Zariski closure with Ian(V ) = Ian(Ṽ ) the ideal of real
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analytic germs vanishing on (V, 0) and defining Ṽ . By a semianalytic stratification
V of (V, 0) we mean a decreasing sequence of closed semianalytic set germs V =
Vk ⊃ Vk−1 ⊃ · · · ⊃ V1 ⊃ V0 = {0} with dimVj = j and Vj\Vj−1 consisting of strata
of dimension j. For the stratification V, we define for the smooth category

(2.1) Derlog(V) = {ξ ∈ θn : ξ is tangent to the strata Si of V for all i}.

We also consider Derlogan(Ṽ ) in the real analytic category. Then, we define

Definition 2.1. The stratification V of the germ of the closed semianalytic set
V, 0 ⊂ Rn, 0 is a semi-coherent stratification if it satisfies the following two condi-
tions:

i) if {g1, . . . , gk} generate Ian(Ṽ ), then in the smooth category

I(V ) ≡ En{g1, . . . , gk} mod m∞
n ;

and
ii) there are ξj ∈ Derlogan(Ṽ ), j = 1, . . . ,m which are tangent to the strata

Si of V for all i such that

Derlog(V) ≡ En{ξ1, . . . , ξm} mod m∞
n · θn.

In general we say that a stratification V of a germ V, 0 ⊂ Rn, 0 is semi-coherent
if there is a germ of a diffeomorphism ϕ : Rn, 0 → Rn, 0 and a semi-coherent
stratification V ′ of a semianalytic germ (V ′, 0) such that ϕ(V ′) = V and ϕ(V ′) = V.

If in Definition 2.1, we require the stronger condition that Ṽ is real coherent,
then the stratification is a special semianalytic stratification (SSA stratification) in
the sense of [DGH].

Remark 2.2. If (V, 0) is a semi-coherent semianalytic set, then the canonical Whit-
ney stratification V of (V, 0) is a semi-coherent semianalytic stratification in the
sense of Definition 2.1. This follows since vector fields tangent to V are tangent
to the canonical Whitney stratification of (V, 0); and conversely by Remark 1.1,
any analytic vector field ξ tangent to the Whitney stratification of (V, 0), will sat-
isfy ξ(g) ∈ Ian(Ṽ ) for any g ∈ Ian(Ṽ ). Hence, by property ii) for semi-coherent
semianalytic sets, we have

Derlog(V) = Derlog(V ) ≡ En{ζ1, . . . , ζr} mod m∞
n · θn .

Hence, properties for semi-coherent stratifications will hold for semi-coherent
semianalytic sets.

The definition of semi-coherent stratification depends upon an ambient space.
We first note that the class of semi-coherent stratifications is preserved under two
standard operations, which removes this restriction.

Proposition 2.3. Let V be a semi-coherent stratification of a semianalytic set germ
V, 0 ⊂ Rn, 0.

(1) If ϕ : Rn, 0 → M,p is an analytic diffeomorphism to an analytic subman-
ifold M,p ⊆ Rm, p, then the stratification ϕ(V) of (ϕ(V ), p) is a semi-
coherent stratification.

(2) Define a stratification V ′ of V × Rk, 0 ⊂ Rn+k, 0 which has strata S′i =
Si ×Rk for the strata Si of V. Then V ′ is a semi-coherent stratification of
V × Rk, 0 ⊂ Rn+k, 0.
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The proof of this proposition closely follows the proof of the corresponding result
for special semianalytic stratifications [DGH, Prop. 5.4, Chap. 5]; see §4.

Second, we may refine a semi-coherent stratification by a series of semi-coherent
stratifications in the following way. Let Vi be semi-coherent stratifications of closed
semianalytic germs Vi, 0, i = 1, . . . , k, with V1, 0 ⊂ V2, 0 ⊂ . . . Vk, 0 ⊂ Rn, 0 such
that each stratum of Vi is contained in a stratum of Vi+1 for each i < k. Then, we
can define a stratification V of (V, 0) = (Vk, 0) which is a refinement Vk with strata
consisting of Si\Vj for all Si in Vj+1 and all 1 ≤ j < k, together with the strata of
V1.

Proposition 2.4. In the preceding situation, the stratification V of the closed semi-
analytic germ V, 0 ⊂ Rn, 0 is a semi-coherent semianalytic stratification.

To accompany these results, we next give the second criterion for establishing
semi-coherence of a stratification V of a germ of a closed semianalytic set (V, 0),
with Zariski closure (Ṽ , 0). This is given by the following criterion from [DGH, Def
5.1, Chap 5].

Special Semianalytic Criterion:

Definition 2.5. A stratification V of V, 0 is said to satisfy the special semianalytic
criterion (SSC) if Ṽ is real coherent and the stratification satisfies the following
conditions:

(1) V and each of the irreducible components Vi are unions of connected com-
ponents of the canonical Whitney stratification of Ṽ .

(2) Each irreducible component Ṽi of Ṽ is smooth; and
(3) For each i, the set of tangent lines T0γ to analytic curves γ in Vi with

γ(t) ∈ Vi for t ≥ 0 and γ(0) = 0 form a Zariski dense subset of PT0Ṽi.

Then, the second criterion is the following given in [DGH, Prop. 5.3, Chap 5].

Proposition 2.6. A stratification V of the closed semianalytic germ V, 0 ⊂ Rn, 0
which satisfies the special semianalytic criterion is a special semianalytic stratifica-
tion. Moreover,

(2.2) Derlog(V) ≡ Derlog(Ṽ ) mod m∞
n θn

In order to apply this result we use a simple criterion for an analytic set germ
(V, 0) being real coherent. This is given by the following (see [DGH, Chap. 5, Prop.
4.1]).

Proposition 2.7. Let V, 0 ⊂ Rn, 0 be a real analytic germ with complexification
VC, 0 ⊂ Cn, 0. Suppose that there is a neighborhood U of 0 ∈ Rn such that for
x ∈ U , the germ (V, x) is Zariski dense in (VC, x) for the local analytic Zariski
topology at x. Then, V is real coherent.

We illustrate using these criterion for several examples that occur for natural
images where stratifications defining generic geometric features of objects are re-
fined by the stratification resulting from shade/shadow curves from a light source
(see [DGH, Chap. 6, 7, 8]). The generic geometric features of objects are modeled
by semianalytic sets which are “partial hyperplane arrangements”.

Example 2.8 (Partial Hyperplane Arrangements). Let Hi ⊂ Rn, i = 1, . . . , r
denote a collection hyperplanes through 0 with defining equations αi = 0. Then
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A = ∪iHi is a (central) real hyperplane arrangement. It has a canonical Whitney
stratification given by the strata

(
∩i∈IHi\(∪j /∈IHj)

)
for each subset I ⊆ {1, . . . , r}.

For each hyperplane Hi, we let Pi denote the closure of a nonempty union of
connected components of Hi\(∪j 6=iHj). Then, V = ∪iPi will be called a partial
hyperplane arrangement. Such a partial hyperplane arrangement has Zariski closure
the corresponding hyperplane arrangement, which is real coherent by Proposition
2.7. Hence, it is a special semianalytic set by Proposition 2.6. A sample of model
semianalytic sets which model geometric features in [DGH] are given in Figure 1.

a) b) c) d)

Figure 1. Examples of partial hyperplane arrangements which
occur as models for feature stratifications: a) edge of surface; b)
crease; c) convex or concave corner; and d) notch or saddle corner.

There are further examples which occur for generic structure of Blum medial
axis which is the Maxwell set for the family of distance functions to the boundary
hypersurface of a region, as in [M2] or [Y], are given in b) and c) in Figure 2.

a) b) c) d)

Figure 2. Examples of partial hyperplane arrangements which
do not occur as models for feature stratifications: a) piecewise
linear model of Whitney umbrella; b) and c) generic models for
Blum medial axes; and d) nongeneric corner.

A second example involves 1-dimensional special semianalytic sets. First, R+, 0 =
{x ∈ R : x ≥ 0} ⊂ R with its Whitney stratification is immediately seen to satisfy
SSC. Hence, by 1) of Proposition 2.3, the image of R+, 0 under an analytic dif-
feomorphism satisfies SSC. Hence, a half-branch of a smooth semianalytic curve in
an analytic submanifold satisfies SSC. More generally, a germ of a 1–dimensional
semianalytic set in an analytic manifold which consists of branches or half-branches
of smooth analytic curves satisfies the condition SSC (see Example 5.5 and Propo-
sition 5.6 of [DGH, Chap. 5]). This yields the following.

Proposition 2.9. A 1-dimensional semianalytic set V, 0 ⊂ Rn, 0 consisting of
irreducible branches of real analytic curves and half-branches of smooth analytic
curves has a special semi-analytic stratification consisting of {V \{0}, {0}}.
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Example 2.10 (Stratifications Refining Geometric Features by Shade/Shadows).
It follows from Proposition 2.4, that the refinement of a partial hyperplane ar-
rangement by a 1-dimensional special semianalytic stratification is again a special
semianalytic stratification, and hence semi-coherent. Using this result, it is proven
in [DGH] that the stratifications resulting from the refinement of any stratification
defining a generic geometric feature by the shade/shadow curves resulting from
light in a generic direction is again a special semianalytic stratification V (and
hence semi-coherent). This enabled the classification of (topologically) stable and
(topological) codimension 1 germs for VA-equivalence for each such stratification
V. The list of such stratifications and the corresponding classification of germs are
given in Chapters 6, 7 and 8 of [DGH].

3. Equivalences of Mappings on Stratifications or Preserving
Stratifications

We consider the groups of equivalences GV or VG preserving a stratification V,
defined by V = Vk ⊃ Vk−1 ⊃ · · · ⊃ V0 = {0}, where in the holomorphic or
real analytic category the stratification is holomorphic (the (Vi, 0) are holomorphic
germs), resp. real analytic (the (Vi, 0) are real analytic germs) and in the smooth
category it is a semi-coherent semianalytic stratification. To speak of all three of
these categories, we denote the corresponding ring of germs by Cn. We also let θn

denote the module of germs of vector fields on (kn, 0) in the appropriate category.
We explain how these groups satisfy the conditions for being geometric subgroups
of A or K and hence the basic theorems of singularity theory are valid for them.
The explanation follows the same form as that for the case for GV or V G given in
[D3, §8] and [D4, §9, 10].

VA as a geometric subgroup.
We now carry out the explanation for the case of VA-equivalence, with that

for the other groups being analogous. Then, VA consists of the group of pairs of
diffeomorphisms (h, h′) (in the appropriate category) where h : kn, 0 → kn, 0 and
h′ : kp, 0 → kp, 0 with h preserving the strata of V. This group is a subgroup of
A and acts on germs f0 : kn, 0 → kp, 0 in the appropriate category by (h, h′) ·
f0 = h′ ◦ f0 ◦ h−1. There are corresponding unfolding groups acting on unfoldings.
VAun(q) consists of unfoldings of diffeomorphisms on q parameters (H,H ′) acting
on unfoldings F on q parameters by (H,H ′) · F = H ′ ◦ F ◦H−1.

We let Derlog(V) be given by (2.1) for any of the three categories. In the holo-
morphic or real analytic categories, Derlog(V) is a finitely generate module over
Cn (denoting the ring of holomorphic, resp. real analytic germs). In the smooth
category, it is finitely generated over En modulo infinitely flat vector fields. If (ht, t)
is a one-parameter group of unfoldings in the unfolding group DV,un(1), then as ht

preserves the strata of V, it follows that ζ =
∂ht

∂t |t=0
is tangent to the strata of V,

so ζ ∈ Derlog(V). If ht fixes 0, then ζ vanishes on 0, and belongs to Derlog(V)0, the
submodule of germs which vanish at 0. Conversely, the one-parameter subgroup
ht of germs of diffeomorphisms generated by some ζ ∈ Derlog(V) will preserve the
strata of V. Hence, (ht, t) is in the group of one-parameter unfoldings DV,un(1). If
in addition, ht fixes 0, then ζ vanishes at 0, and conversely. Thus, the extended
tangent space TDV,e = Derlog(V), with TDV = Derlog(V)0 (the submodule of
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Derlog(V) consisting of vector fields vanishing at 0). Thus, T VAe can be written

(3.1) T VAe = Derlog(V) ⊕ θp

Likewise, the tangent space T VA is given by

(3.2) T VA = Derlog(V)0 ⊕ mp · θp

For the smooth category, if (V, 0) is a semi-coherent semianalytic stratification of
a closed semianalytic subset V, 0 ⊂ Rn, 0, then by the results in §2, we may replace
Derlog(V) by En{ξ1, . . . , ξm} with ξj given in Definition 2.1. Then, the infinitesimal
orbit map is the restriction of that for A.

(3.3) dαf0(ξ, η) = η ◦ f0 − ξ(f0) for ξ ∈ Derlog(V) and η ∈ θp

Then, just as for the case of VA, for f0 in the appropriate category, T VAe is a
finitely generated module over the adequately ordered system of rings f∗0 : Cp → Cn

(modulo infinitely flat vector fields in the smooth category), and dαf0 would be a
homomorphism of such modules. Hence, VA would satisfy the four conditions to
be a geometric subgroup of A (the other three are easily seen to hold, using the
modified version of the tangent space condition for the smooth category).

Hence, applying the results in [D2] and [D3], we conclude

Theorem 3.1. Suppose V, 0 is a stratification of V, 0 ⊂ kn, 0 of the correspond-
ing type for each category of mappings: holomorphic, real analytic, or semi-coherent
semianalytic stratification for the smooth category, then VA is a geometric subgroup
of A (using (3.1) and (3.2)) for the adequately ordered system of rings {Cn, Cp}.
Hence, both the finite determinacy and versal unfolding theorems and their conse-
quences are valid for VA.

There is an analogous result for any VG or GV for G = A,K,R.

Example 3.2. The version of Theorem 3.1 for the case of special semianalytic
stratifications is applied in [DGH] to the stratifications in R3 arising as refinements
by shade/shadow curves of the stratifications by generic geometric features. The
theorem together with application of classsification methods in [BKD], [BDW], and
[Kr] and the topological methods in [D3] and [D4] yields the classification of both
the (topologically) VA-stable projections of the stratifications and the (topological)
codimension 1 transitions given by Theorem 4.1 in Chap. 6 and Theorem 5.1 in
Chap. 7 of [DGH].

A(V) as a geometric subgroup.
Let V be a stratification of a germ (V, 0). Instead of A-equivalence preserving a

stratification V, we may consider instead A-equivalence for germs on V, which we
denote by the group A(V). For just the germ of a variety (V, 0), the tangent space
for the case ofA(V ) was determined in [D2, §8] and [D3, §9, 10]. To consider instead
the germs on the stratification V, the equivalence is defined via the group consisting
of diffeomorphisms H : kn+p, 0 → kn+p, 0, h : kn, 0 → kn, 0, and h′ : kp, 0 → kp, 0,
such that: i) h ◦ πn = πp ◦H; ii) H preserves V ×kp; iii) H|(V ×kp) = h× h′; and
iv) h preserves the strata of V. Then, H ◦ (h×h′)−1 ≡ id on V ×kp. A calculation
then shows that

(3.4) T A(V)e = Derlog(V) ⊕ θp ⊕ I(V ) · Cn+p{
∂

∂y1
, . . . ,

∂

∂yp
} .
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Likewise, the tangent space T A(V) is given by

(3.5) T A(V) = Derlog(V)0 ⊕mp · θp ⊕ I(V ) · Cn+p{
∂

∂y1
, . . . ,

∂

∂yp
} .

Now the infinitesimal orbit map is defined by

(3.6) dαf0(ξ, η, ζ) = ζ ◦ f̃0 + η ◦ f0 − ξ(f0)

where as above, ξ ∈ Derlog(V) and η ∈ θp; in addition ζ ∈ I(V )·Cn+p{
∂

∂y1
, . . . ,

∂

∂yp
},

and f̃0(x) = (x, f0(x)).
Then, an analogous argument as above yields the following.

Theorem 3.3. Suppose V, 0 is a stratification of V, 0 ⊂ kn, 0 of the corresponding
type for each category of mappings: holomorphic, real analytic, or semi-coherent
semianalytic stratification for the smooth category, then A(V) is a geometric sub-
group of A (using (3.4), (3.5)), and (3.5)) for the adequately ordered system of
rings {Cn, Cp}. Hence, both the finite determinacy and versal unfolding theorems
and their consequences are valid for A(V).

Again there is an analogous result for K(V), and R(V).

Equivalences Allowing the Stratification to Deform.
Lastly, suppose that (V, 0) is defined as g−1(V ′), for a stratification V ′ of a

germ V ′, 0 ⊂ kr, 0, with the germ g : kn, 0 → kr, 0 being finitely determined for
KV′ -equivalence. Then, the equivalence of a germ f : kn, 0 → kp, 0 on (V, 0),
allowing both V and f to deform, is obtained by considering the action on the
pair (g, f) : kn, 0 → kr+p, 0 by KV -equivalence on g and A-equivalence on f ,
using a common diffeomorphism on (kn, 0). Again, if the stratification V ′ is of
the appropriate type for each category, then the equivalence group is a geometric
subgroup of A or K, and so the basic results of singularity theory apply for this
equivalence.

Remark 3.4. We have concentrated on how the groups G = A,K,R can be mod-
ified to allow an equivalence preserving a variety (V, 0) or stratification (V, 0) for
each of the three categories. In fact, for any geometric subgroup G which has a
factor group Dr, we can replace it by a subgroup DV or DV , for V, 0 ⊂ kr, 0 of V a
stratification in (kr, 0). Provided (V, 0) or (V, 0) are appropriate for the category,
the resulting group of equivalences will again be a geometric subgroup.

Concluding Remarks.
The local singularity-theoretic methods we have described apply to finite codi-

mension germs for the appropriate equivalence group. The abundance of such germs
will follow when the stratification (V, 0) or germ (V, 0) is “holonomic”in the sense
introduced by Saito [Sa]. By this we mean there is a neighborhood U of 0 such that
for each x ∈ U , the generators {ξ1, . . . , ξr} of Derlog(V), resp. Derlog(V ), span the
tangent space TxSi of the statum of V, resp. the canonical Whitney stratification
of (V, 0), which contains x.

The special semianalytic stratifications which occur in [DGH] for the refinem-
ments of the stratifications of geometric features by shade shadow curves are all
holonomic. However, the classification shows that finite VA-codimension germs of
low codimension already are frequently multi-modal singularities; so that topolog-
ical methods of [D3] and [D4] are needed to carry out the classification.
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4. Proofs of the Results

It remains to prove the results concerning semi-coherence.

Proof of Proposition 1.6. First, for i), we let f ∈ I(V ). There exists a neighborhood
0 ∈ U ⊂ Rn such that f is defined on U and vanishes on V ∩ U . Also, we denote
the weights of the coordinates on Rn by wt (xi) = ai > 0 for i = 1, . . . , n. We
expand the Taylor expansion of f in terms of weights f̂(x) =

∑∞
j=1 fj(x), where

wt (fj) = j.
We claim that each fj ∈ I(V ). If not, choose the smallest k for which this is not

true. Suppose x0 ∈ V ∩ U is such that fk(x0) 6= 0. Let x0 = (x0 1, . . . , x0 n) and
define γ : R → Rn by γ(t) = (x0 1t

a1 , . . . , x0 nt
an). By the weighted homogeneity

of fk, it follows fk ◦ γ(t) = tkfk(x0). Then, the Taylor expansion of f ◦ γ(t) is
given by ̂f ◦ γ(t) =

∑∞
j=1 t

jfj(x0). On the one hand as f ◦ γ(t) = 0 for 0 ≤ t < ε,
the Taylor expansion of f ◦ γ(t) is zero. However, by assumption the coefficient
of tk is fk(x0) 6= 0, so it is the lowest nonzero term of the Taylor expansion, a
contradiction. Thus, all fj ∈ I(V ). As each fj is analytic and = 0 on V , which has
local analytic Zariski closure Ṽ , we conclude fj ∈ Ian(Ṽ ). Hence, we may write
as a weighted homogeneous sum fj =

∑s
i=1 hi,jgi, where gi are a set of weighted

homogeneous generators of Ian(Ṽ ) with weights wt (gi) = bi > 0. Hence, we may
write as a formal sum

f̂ =
s∑

i=1

(
∞∑

j=1

hi,j)gi .

As wt (hi,j) = j − bi the formal sum
∑∞

j=1 hi,j defines an element ĥi ∈ R[[xn]],
where xn = (x1, . . . , xn).

Lastly, by Borel’s Lemma, there is a germ hi ∈ En with Taylor expansion ĥi.
Thus, if we let f ′ =

∑s
i=1 higi, we have f̂ = f̂ ′, or equivalently f ≡ f ′mod m∞

n . As
this holds for all f ∈ I(V ), the result i) follows.

For ii) we follow an analogous line of reasoning and use the same notation as for
i). Let ξ ∈ Derlog(V ). There is a neighborhood 0 ∈ U ⊂ Rn so that both ξ and the
generators gj of Ian(Ĩ) are defined on U and so that ( by Remark 1.1) ξ(gj) vanishes
on V ∩ U for j = 1, . . . , s. We again consider a weighted expansion of the Taylor
series of ξ, ξ̂ =

∑∞
j=n0

ξj , where ξj is weighted homogeneous of weighted degree j.

Here, as usual, we assign weights wt (
∂

∂xi
) = −ai and then we let n0 = −maxi{ai}.

We claim that each ξj ∈ Derlogan(Ṽ ). If not let the lowest j for which this
fails be denoted by k and for this k there is an g` so that ξk(g`) does not vanish
on V in a neighborhood of 0, otherwise as it is analyic, it also vanishes on Ṽ , so
ξk(g`) ∈ Ian(Ṽ ). If this held for each i, then ξk ∈ Derlogan(Ṽ ). Hence, there is
an x0 ∈ V ∩ U so that ξk(g`)(x0) 6= 0. We consider the curve γ(t) as above. Then
ξ(g`) vanishes on V ∩ U , and hence on the curve γ(t) for 0 ≤ t < ε. Thus, the
Taylor expansion of ξ(g`) ◦ γ(t) is 0.

Then ξj(g`) is a weighted homogeneous polynomial of weighted degree j+b` > 0
(if it is a nonzero polynomial). As we assume it is nonzero, we also have ξj(g`) ◦
γ(t) = ξj(g`)(x0)tj+b` . We then compute the Taylor expansion of ξ(g`) ◦ γ(t) by

̂ξ(g`) ◦ γ(t) =
∞∑

j=n0

ξj(g`)(x0) tj+b`
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Again, this Taylor series has a lowest nonzero term tk+b` , contradicting that it is
zero. Thus, each ξj ∈ Derlogan(Ṽ ).

If by [Lo], V = Vk ⊃ Vk−1 ⊃ · · · ⊃ V1 ⊃ V0 = {0} defines the canonical Whitney
stratification V, consisting of semianalytic sets (also invariant under R+), then we
may apply the preceding argument to each Vi to conclude ξj ∈ Derlogan(Ṽi). As
ξj is tangent to the regular strata of each Vi, ξj ∈ Derlogan(V), the submodule of
Derlogan(Ṽ ) consisting of germs of analytic vector fields tangent to the strata of V.

As An is Noetherian, Derlogan(V) is a finitely generated An-module. As Ṽ ,
V , and V are invariant under the R+-action, Derlogan(V) has a set of weighted
homogeneous generators {ζ1, . . . , ζr} of weights wt (ζj) = cj . We may write ξj =∑r

i=1 hi,jζi, where hi,j is weighted homogeneous of weighted degree j − ci (and
hi,j = 0 if j − ci < 0). Thus, we may define ĥi =

∑∞
i=n0

hi,j ∈ R[[xn]] and obtain

ξ̂ =
r∑

i=1

ĥiζi

Again, using Borel’s lemma, there are smooth germs hi whose Taylor expansions
are ĥi, and we let ξ′ =

∑r
i=1 hiζi. We conclude ξ ≡ ξ′mod m∞θn. As this holds for

every ξ ∈ Derlog(V ), we obtain ii). �

Propositions 2.7 and 2.6 were proven in [DGH, Chap. 5]. Also, Propositions 2.3
and 2.4 were proven for the case of special semianalytic stratifications in [DGH,
Chap. 5, §6]; however, the conditions i) and ii) in Definition 2.1 directly follow
from the arguments given in the proofs for the special semianalytic case.

We do remark that to deal with the lack of weighted homogeneity which was used
heavily in the proof of Proposition 1.6, the arguments proceed by first reducing to
the formal category, and using the Artin approximation theorem and the Artin-
Rees Lemma to obtain the desired generators there. Then, Borel’s Lemma gives
the desired result. These ideas are used repeatedly in the proofs in [DGH].
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