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INTRODUCTION

In this paper, we consider the problem of associating geometric structures to
discrete objects arising in various “real world” situations and to the mathematical
objects used to model them, so that we may capture geometric properties of these
objects. Such “real world” objects typically may be: discretely defined functions
which take constant values on the cells of a grid, as for example illustrated by 2
or 3—dimensional computer images viewed as intensity-valued functions on a grid;
piecewise linear approximations to surfaces obtained by sampling at a finite number
of points; discrete measures obtained from finite data sets of points; numerical
solutions to partial differential equations, etc. as in Fig. 1.

FIGURE 1. a) Discrete Function, b) Piecewise Linear Function,
and ¢) Discrete Point Set

Such objects are nondifferentiable, even noncontinuous, and they are subject
to “noise and errors”. They are described using mathematical objects typically
treated by methods of analysis such as: LP—functions or special subspaces such as
functions in Sobolev spaces; measures, including regular Borel measures, probability
measures, or signed measures; and more generally distributions, including tempered
distributions and distributions with compact support.

Such objects are usually not candidates for geometric analysis, although we
do “see”geometric features in the objects in Fig. 1. However, we do not speak
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about geometric properties such as curvature properties of LP functions, nor the
shape or other geometric features of measures. This is because traditionally, ge-
ometrical methods are applied to differentiable functions and manifolds to obtain
differential-geometric properties. Suppose we wish to extract geometric features
from a discrete function or measure, or the corresponding mathematical objects.
One possible approach would be to first approximate them using differentiable func-
tions or distributions. For discrete objects this would involve some method such as
for functions using splines or surface—fitting or for measures, approximations using
differentiable distributions. Then, geometric properties could be extracted from the
approximations.

There are several problems with this approach. First, it is not clear whether we
could expect reasonable geometric structures as we use finer approximations by dif-
ferentiable functions, etc. Second, by their very nature, the topologies on these
spaces essentially disregard differentiability properties; hence, such an approxi-
mation process would be unstable for geometric properties that depended upon
derivative properties. Thus, it is unclear to what extent any associated geometric
properties can be made independent of the approximation. Despite these problems,
our goal will be to show how to associate in an intrinsic way geometric structures
to both discrete objects and their mathematical representations, whether they be
nondifferentiable functions, measures, or distributions.

In fact, our goal will be to associate scale-based geometric structures satisfying
the following properties.

Principal Properties for Scale-based Geometry:

(1) Applicability to Discrete and Nondifferentiable Objects : It should be pos-
sible to associate such geometric structures to both discrete ”real world”
objects and the mathematical entities modeling them.

(2) Genericity : For “almost all” objects, the associated geometric structures
should have a structure describable in terms of a simple “catalogue”of pos-
sible local properties.

(3) Stability : For “almost all” objects, the geometric structure should be
structurally stable. This means that under sufficiently small perturbations
within the space of objects, the perturbed geometric structures should be
“geometrically equivalent” to the initial one.

(4) Generic Transitions : There should be a specific list of generic transitions
which occur in the geometric structure under deformations.

(5) Applicability to Associated Objects : Geometric structures should be ob-
tained, not just for the original objects, but also for associated objects
which capture specific geometric feature types appearing in the objects.

It is impossible to satisfy all of these conditions using classical geometric methods
(applied to differentiable approximations), especially if we want to satisfy both 1)
and 3). We will overcome this intrinsic incompatibility via “scale-based geome-
try” which is based on two ingredients. The first introduces “scale”as an additional
parameter implicit in the analysis of “real world objects”; and the second concen-
trates on “qualitative geometry”.

By “qualitative geometry”of differentiable functions, submanifolds, or distribu-
tion functions, we mean differential geometric properties identified not by particular
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values for invariants or quantities (e.g. curvature), but rather by identifying: re-
gions where the invariants have specific properties; special subsets where various
quantities take extremal values; or subsets separating regions where different prop-
erties are exhibited. Such subsets can be typically defined by algebraic conditions
on derivatives and can be analyzed using singularity theoretic methods.

However, such properties are not intrinsic for nondifferentiable functions. In
general, there is even a lack of stability of geometric properties/structure under
small perturbations of smooth functions if we only can control them using the C°
topology. This problem can be overcome through the introduction of scale. Our
use of scale contrasts with the standard usage in applied mathematics, where the
term “scale”’refers to identifying specific scales of interest in a problem for model-
ing; however, it shares similarities with the notion of scale—invariance properties of
equations (see e.g. [Ba]).

We are conerned instead with the interaction of different properties at different
and varying scales. This approach to scale follows the idea of introducing scale for
problems in computer imaging, due to Witkin via “Gaussian blurring” [Wi] (also
see Ijima [WII]). Gaussian blurring is defined by convolution with a Gaussian
kernel and introduces an extra variable “scale”. It was originally introduced to
both overcome problems with small perturbations by “noise” and also to provide a
measure of scale for geometric features. Koenderink [K] showed the essential nature
of scale for questions involving imaging, and deduced that for scale to satisfy certain
intrinsic properties, it must be given by Gaussian blurring. Gaussian blurring leads,
via the “semigroup” property, to solutions of evolution equations, especially the heat
equation. There has since evolved a large body of results devoted to properties of
Gaussian blurring, scale space, and variants such as nonlinear blurring, see e.g. the
books [tHR], [Li], [Sp], and [Mo] and many additional references therein.

In this paper, we apply scale in a broader sense than that given by Gaussian
blurring, by allowing convolution with any of a large class of “scale-based kernels”,
which are characterized by their scaling behavior under the action of a scaling
group. These include among many others: Gaussian kernels, their derivatives,
and certain other kernels obtained by modifying Gaussians. These kernels may
depend on multi—parameter scales for tracking several different scales for different
features. We consider the properties of scale space resulting from the action of a
“Poincaré Scaling group”acting on scale space, with the corresponding behavior of
convolutions with the scale— based kernel.

This approach will show that in a very general sense, scale provides a bridge
allowing classical geometric methods to be applied to a much larger classes of ob-
jects, the tempered distributions, and to specific subspaces which include nondif-
ferentiable LP-functions, Borel and/or probability measures, and distributions of
compact support. Furthermore, we will give criteria ensuring that the applica-
tion of scale-based geometry to these objects satisfies the genericity and stability
properties listed above.

Scale-based geometry involves the interaction of three classes of objects: 1) the
scale-based kernels, 2) the geometric structures capturing the various possible geo-
metric properties, and 3) the various subspaces of tempered distributions to which
we would like to apply scale-based versions of the properties. First, we give general
criteria on the scale-based kernel, the specific scale-based geometric properties, and
the subspaces of distributions so that on a given compact region C' of scale space,
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there exists an open dense subset of distributions in the subspace which possess
generic scale-based geometric properties. This applies to the full space of tem-
pered distributions (Theorem 5.8) and to subspaces that satisfy a general criterion
(Theorem 6.3); in particular this criterion is satisfied by many standard subspaces
(Theorem 6.4 and Corollary 6.5), including spaces of LP-functions, Sobolev spaces,
spaces of regular Borel or probability measures, and distributions of compact sup-
port.

Second, the local properties of the scale-based geometric structure are given in
terms of the local structure of an associated “closed Whitney stratified set” (Theorems
5.10 and 6.3). This representation leads to a specific criteria (Proposition 8.1) for
determining whether the scale-based properties agree with those for classical ge-
ometry, or how they must be modified. However, the same generic scale-based
properties which occur for smooth functions will also occur generically for nondif-
ferentiable functions, measures, etc.

Third, we deduce the structural stability of the associated geometric structures
on the compact region C' of scale space under all sufficiently small perturbations
(Theorems 5.11 and 6.3). This structural stability holds for perturbations within
the full space of tempered distributions as well as within specific subspaces. As
a consequence, generic nondifferentiable functions, measures, etc, can be approx-
imated by differentiable functions, distributions, etc. in many different ways, yet
for any sufficiently close approximation, we obtain the same scale-based geometric
properties on the given compact region of scale space.

These results are proven using a “relative transversality theorem”, which is an
extension of the classical Thom Transversality theorem and applies to subspaces of
distributions under convolution [D2]. This requires an introduction of convolution
jet space to replace the classical jet space for smooth functions (§4). The structure
of this convolution jet space results from the scaling properties of the scale-based
kernel under the scaling group. We then prove the genericity and stability results
using transversality results involving closed Whitney stratified sets.

Fourth, the method of proof allows us to deduce that even discrete and piecewise
linear functions and discrete measures can exhibit geometric properties generically
on compact subsets of scale space (Corollaries 7.4 and 7.5). While at first it seems
surprising that any discrete object can exhibit geometric properties generically, we
give several senses in which “most discrete functions”have this property (Theorems
7.6 and 7.8).

Fifth, we show that the criterion for scale-based kernels which we have mentioned
is valid for simple Gaussian scale kernels and more generally the class of “extended
Gaussian kernels” obtained from Gaussian kernels by allowing anisotropy, applying
derivatives, and allowing multiple independent scales (Proposition 9.4). We extend
the results about a basis of solutions for the heat equation as given in [D1] to obtain
a basis for convolution jet space for this more general class of kernels (Corollaries 9.7
and 9.9). The criterion for geometric properties is valid for specific geometric prop-
erties associated to: classical differential geometry by, e.g. Porteous [Pol], [Po2],
Koenderink [K2], Bruce-Giblin et al [BGG], [BGT], Mumford [Mu]; edge—based
geometry Canny [Cal, Rieger [Ril], [Ri2], medial geometry defined via “ridges”by
Pizer-Eberly et al [Ebl], [Eb2], [PE], “watershed regions“[NO], and more generally
“relative critical sets” (this author [D3], [D4], Miller [Mi], and Keller [Ke]), as well
as general higher order differential invariants by ter Haar Romeny et al [RFSV]
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(see §8). Again, the criterion for subspaces is valid for subspaces of L? functions,
spaces of measures such as positive Borel measures, probability measures, etc, and
full spaces of tempered distributions or distributions of compact support.

Sixth, we also allow derived distributions which arise by applying a discrimina-
tion criteria ( e.g. as in computer imaging identifying characteristic properties of
features, textures, etc.). These criteria may be defined by applying “discrimina-
tion filters”, (distributional) differential operators, or statistical methods yielding
functions, measures or more general distributions which identify the “amount of a
property” occurring in a given region of space. We may then extract scale-based geo-
metric properties of these discrimination distributions. Because the discrimination
process typically involves a specific scale, genericity results can only be expected
for regions that are at a sufficiently larger scale. Hence, results are described in
terms of genericity of scale-based properties occurring on a given compact region
C of scale space.

We give sufficient conditions that the geometric properties of these discrimina-
tion distributions are given by generic geometric structures on C' for a dense open
subset of the space of initial distributions (Proposition 10.2 for general operators,
and Theorem 10.5 for linear operators). Thus, we deduce geometric properties of
the regions where the discriminated properties occur (§10). We apply the criteria
for linear operators to three situations to obtain genericity of scale-based geome-
try on a given C. These include partial differential operators (Corollary 10.6), a
linear operation which can approximate “block functions” (see Fig. 2) on cells of a
sufficiently fine mesh (Corollary 10.7), and a specific simple form of texture discrim-
ination which involves integral comparison with fixed “mask functions”on the cells
of a sufficiently fine mesh (Corollary 10.9). As a block function is a discrete approx-
imation to a Dirac d—function, all three of these conditions involve approximating
a 0—function by discrimination distributions.
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FIGURE 2. A Block function on a square mesh for R2

If the initial object can be analyzed using a number of different discrimination cri-
teria, these yield discrimination distributions which together define a vector-valued
tempered distribution. The scale-based geometric properties of these vector-valued
distributions identify how the identified features interact on various regions. Fur-
thermore, we allow different scaling actions for the different distributions, reflecting
the fact that the properties are occurring at independent scales. Even with different
scale-based kernels and different scaling actions for each component, we still show
that scale-based geometric properties of vector—valued tempered distributions sat-
isfy both genericity and stability conditions (§11). Lastly, we combine the results of
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§10 and §11 to provide a criterion involving “generic independence of discrimination
features” which guarantees the genericity and stability of multi—feature geometry for
an open dense set of initial distributions (Proposition 12.2). Using this, we give a
sufficient condition, in terms of independence conditions for the mask functions on
individual cells, that a simple form of multi-texture discrimination will have generic
scale-based geometric properties (Corollary 12.5). This gives evidence that more
general multi-texture detection schemes will likewise exhibit generic scale-based
properties.

Finally, in Part 4, we consider how these methods apply to families of distribu-
tions yielding generic transitions occurring within families. To understand the tran-
sitions that can occur in families, we must understand how transversality to closed
Whitney stratified sets can fail in families. We apply the notion of Ky —equivalence
from singularity theory to analyze the failure of transversality to a subset V' (§13).
We apply it in several different settings, as the families of convolved functions on
scale space may depend on parameters in a number of ways. We can view the
scaling parameters themselves as parameters (§14). Alternately, we can view the
families as depending on external parameters (§16). Third, we can consider ker-
nels which contain auxillary parameters and hence introduce parameters for the
convolution functions on scale space (§15).
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1. FrROM CLASSICAL TO SCALE-BASED GEOMETRY: AN OVERVIEW

Classical Geometry. By “classical methods of geometry”, we are not referring to
geometry from a time period, but rather to the method of obtaining geometric prop-
erties by applying differential-geometric methods to differentiable functions or sub-
manifolds. The most obvious example is classical differential geometry. Within it
we often want to be able to identify regions where specific geometric features are dis-
tinguished. For a surface in R3, distinguished curves such as “crests”, “ridges”, and
parabolic curves capture properties of the surface. These curves have “generic prop-
erties”see e.g. Porteous[Pol], [Po2], Koenderink [K2], Bruce-Giblin-Tari [BGT], etc.
Very general results on generic geometric properties of differentiable manifolds are
given in Wall [Wa]. For functions, there are more possiblilties. If we view the graph
of the function, we can again consider its generic differential geometry; however,
the dependent variable may not be commensurate with the independent variables,
so such differential geometric information will often not have intrinsic meaning,.

However, there are alternate ways to extract geometric information directly from
the function. These include:

(1) Edge—Based Geometry : Regions of relative values for the function are
separated by “edges”, where the change in values are most significant. Some
possibilities include: the “Canny edge”[Ca], and its higher dimensional
analogues, see e.g. Rieger [Ri4].

(2) Level Set Geometry : The functions level sets themselves have differential
geometric properties, such as extremals of curvature, which reveal geometric
information about the function. Gauch [Gau], Rieger [Ri3]. Furthermore,
there are “level set methods”for allowing regions to evolve as level sets to
detect certain geometric regions, Osher—Sethian [OS], [Sn].

(3) Medial Geometry : One of the very first geometric structures to be asso-
ciated to a region with smooth boundary was the Blum medial axis [BN],
which associates a skeletal structure capturing the shape of the region. This
has been extended to functions using the notion of “ridges”, which can be
defined in a number of different ways [Eb1]. The height ridges of Pizer and
Eberly [PE] exhibit medial properties quite different from those of the me-
dial axis, see e.g. [MPP], [MPL]; however, they can be placed into a larger
“relative critical set”structure which explains the properties of height ridges
and has properties with some advantages over the Blum medial axis ([D3],
[D4], [Mi], [Ke]). Medial properties can also be alternately investigated
using optimal parameter height ridges [Fr], [Fu2]. As well, a watershed
definition of medialness leads to segmentation into watershed regions [NO].

(4) Higher Order Differential Invariants : Using invariant theory, it is possible
to determine the expressions involving higher order derivatives which are
invariant under translation and rotation,ter Haar Romeny et al [RFSV].
Geometric properties which are invariant under rotations and translations
can then be expressed via algebraic conditions involving these differential
invariants.

Genericity and Stability via Transversality. The preceding geometric properties can
be characterized in terms of algebraic conditions on derivatives (both algebraic
equalities and inequalities). Such conditions define for functions defined on U C
R, “semialgebraic”sets W in jet space J¢(U,R), which consists of {-jets at points
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(z,y) € U xR (i.e. the f—th order Taylor expansions at (z,y)). Such sets W can be
decomposed into smooth pieces {W;} which form a “Whitney stratified subset”of
jet space (see §5).

For classical geometry, if we were considering all smooth functions C*° (U, RP),
then given f € C*°(U, RP), there is the “jet-extension map”j*(f) : U — J¢(U,RP)
sending z +— j¢(f)(2), the f-jet of f at (x, f(x)). Then, the standard Thom
Transversality Theorem (see e.g. [GG, Thm 4.9]) asserts that the set W of smooth
functions f on U for which j¢(f) is transverse to W forms a residual subset (or
alternately of the second category) in C°°(U,RP). Because C*°(U,RP) is a Baire
space, W is dense. It also follows that the set of smooth functions W for which
§4(f) is transverse to a countable number of smooth submanifolds {W;} is still
residual. The standard Thom transversality theorem may be further strengthened
when the collection {W;} are the strata of a closed Whitney stratified set W. Then,
a strengthened form of the Thom transversality theorem (see [GMc]) asserts that
W is open and dense.

Example 1.1 (Genericity for classical differential-geometric properties). The
generic properties of curves in surfaces such as ridges, crest, parabolic lines, etc.
have been determined and can be described by singularity classification of height
functions and distance-squared functions, see e.g. [Pol], [Po2], [K2], [BGT], and
more generally [Wa]. This classification is given by algebraic conditions on partial
derivatives.

The generic properties of Canny edges for functions in the plane have been
determined by Rieger [Ril], and given in terms of algebraic conditions on derivatives
of the functions. They have several unexpected generic properties, such as genericity
of corners, that differ from what one would expect from an “edge”. This has been
partially extended to higher dimensions in [Ri4].

For the evolution of level surfaces under mean curvature flow, the case of level
curves has remarkable properties discovered by Gage, Hamilton [Ga], [GH] and
Grayson [Gr]. These hold for all sufficiently differentiable curves. However, al-
ready for level surfaces in R?, the behavior becomes more subtle and is not fully
understood. Generic geometric properties of level curves are given in [Ri3].

For the Blum medial axis, there is a large body of work devoted to its computa-
tion and properties. Among the properties of the medial axis that have been worked
out include: the generic properties in dimensions < 6, Bryzgalova [Brz], Yomdin
[Y], Mather [M3], stability [M3], deformation properties in one-parameter families,
Bogaevski [Bg], the relation between the geometry of the region boundary and that
of the medial axis, Nachman-Pizer [NaP], and the representation of the medial
axis as a shock set of an evolution equation for the boundary, Kimia-Tannenbaum-
Zucker [KTZ]. The analysis of generic properties was further extended to a related
object the symmetry set Bruce-Giblin-Gibson [BGG] [BG].

The generic properties for height ridges follows from the determination of the
properties of the more general relative critical set. For relative critical sets, the
generic properties, stability, and generic transitions in one and two parameter fam-
ilies have been determined in [D3], [D4], Miller [Mi], Keller [Ke]. The generic
properties for optimal parameter height ridges have been determined in the sim-
plest case of 1-dimensional ridges and a single parameter [Mi]. For medial structure
associated to watersheds, the generic structure follows from the structure of stable,
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unstable and connecting manifolds for gradient dynamical ststems due originally to
Smale [Sm] (see also [NO] for watersheds in computer imaging).

Introduction of Scale. All of this says nothing about the nondifferentiable objects
we considered in the introduction. To consider them, we view them as tempered
distributions, and introduce scale by convolving them with a fixed “scaling kernel”
G(z,\), for z € R" and scaling parameters A € A C R . The simplest such scaling
kernel is the Gaussian kernel, with a single scale parameter. However, ultimately, we
shall consider several different objects each with independent or interacting scales,
leading us to consider multiple kernels with multiple independent scales. Hence,
we specifically want to consider kernels with scaling parameters, and ultimately we
consider “distributions with parameters”. Thus, we extend consideration to “uni-
formly tempered distributions”to allow both scaling parameters and deformation
parameters.

First, we enlarge the Schwartz space to the space of uniformly rapidly decreasing
functions. Then, we replace the space of tempered distributions by a larger space
of “uniformly tempered distributions”on R™ x A. This space allows us to consider
tempered distributions depending on scaling parameters, and contains the tempered
distributions as a subspace. Then, there is an analogous convolution map from
uniformly tempered distributions. Provided G is “uniformly rapidly decreasing”,
we now obtain smooth functions uxG € C*°(R"™ x A, R), where the A € A measures
certain scales on R™ . This convolution map is shown to be continuous for the
regular C*°—topology (Theorem 3.6) with image denoted by Ha, . Restricted to
the subspace of tempered distributions, it yields a subspace Hg.

The subspaces of smooth functions Ha,g or Hg form rather small subspaces
of C®(R™ x A,R); thus, there is no a priori reason to expect them to satisfy
any transversality conditions; they may entirely miss any W given by the Thom
transversality theorem.

To overcome the nonapplicability of the Thom transversality theorem to the sub-
space of functions Hg arising as convolutions with G, we will apply instead a “rela-
tive transversality theorem” [D2, Thm 1.3] which replaces the jet space J¢(R? x A, R)
by the convolution jet spaces "Hé or Hﬁ’G consisting of f—jets of functions in Hg
or Ha,g. To be able to apply this theorem, we must know that the convolu-
tion jet spaces have a sufficiently nice structure. For a general linear subspace
H C C=(U,R), the associated jet space H¢ need not even have fibers of constant
dimension. For example, if H is spanned by a single function f, then if z¢ is a
critical point with f(zo) = 0, then the fiber #. =0

To determine the structure of the convolution jet spaces H% and Hf;,G, we use
the action of the “Poincaré scaling group” PSS, which is formed as a semi-direct
product of the scaling group and translations. Provided the scaling kernel G is a
“scale-based kernel”, which means it satisfies certain scaling conditions, we show
that the convolution jet spaces are trivial fiber bundles which are also semialgebraic
submanifolds (§4). This allows us to use the relative transversality theorem.

Genericity and Stability for Scale-Based Geometry. For a property P defined by
transversality to a closed Whitney stratified set W C HE or Hﬁ,G, we first apply
the relative transversality theorem to conclude that for a compact subset of scale
space C C R™ x A, there is an open dense subset of (uniformly) tempered distri-
butions u whose convolutions satisfy j*(u * G) is transverse to W relative to HE,
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so that with u exhibits P transversely on C (theorem 5.8). Then, we may apply
the Thom isotopy theorem [Th], [M2] to conclude that on the subset C, such a
generic distribution exhibits P on a Whitney stratified subset whose local struc-
ture is determined by that of W (Theorem 5.10). Moreover, a further application,
together with arguments of Mather, allow us to conclude that the subset where P
is exhibited on C is structurally stable under any sufficiently small perturbation in
the space of (uniformly) tempered distributions.

In the preceding, we would like to furthermore know that if, for example, we
have a nongeneric positive Borel measure, then we can make an arbitrarily small
perturbation to another near positive Borel measure which has generic scale-based
geometric properties. We identify conditions for the scale-based kernel G (condition
(A)) and for a subspace T of tempered distributions (condition (B)) which imply
that the preceding conclusions (especially the density) hold within the subspace T.
This condition (B) is satisfied by subspaces we have already mentioned such as the
LP functions, positive (or signed) regular Borel measures, etc. (Theorems 6.3 and
6.4). Moreover, condition (A) is valid for a large class of “Extended Gaussian Ker-
nels”, obtained from Gaussian kernels by allowing anisotropy, multiple independent
scales, and applying derivatives (§9). Thus, we are able to conclude that all of the
subspaces we have mentioned will generically exhibit properties on scale space for
any of the extended Gaussian kernels.

Furthermore, the transversality arguments allow us to directly obtain conclu-
sions for genericity for discrete or piecewise linear functions and discrete measures.
Although the discrete functions and measures form a very restrictive class of non-
differentiable functions or measures, we still establish the density of the set of
discrete functions and measures which exhibit a scale-based property generically
on a compact subset of scale subspace (Corollaries 7.4 and 7.5). Although open-
ness is meaningless for sets of discrete objects, we explain how nongeneric discrete
functions and measures can be approximated by generic ones obtained by refining
the defining mesh (Theorems 7.6 and 7.8).

To apply these results to specific geometric properties, we must be able to trans-
late classical geometric conditions mentioned above to scale-based conditions. Be-
cause the conditions defining a classical geometric property are given by semi-
algebraic conditions, the (closure of the) subspace defined by them is a closed
semi—algebraic subset W’'. The properties of ’Hé imply that its intersection with
Hé is again a closed semi-algebraic subset W. Then, by a theorem of Lojasiewicz
[Lo], W still has a Whitney stratification. Hence, we obtain scale —based versions
of the properties by transversality to W relative to Hé (88).

If W intersects ’Hé transversally, then we show by a fiber square argument that
the geometric structure and local properties associated to P for convolutions with
G will exhibit exactly the same generic properties as will smooth functions. This
is verified e.g. for Canny edges [Ri2] and relative critical sets [D4], [Mi], and [Ke].

If the intersection is not transverse, then convolutions with G will still exhibit
generic versions of property P. They may now display different properties from
those exhibited by smooth functions. However, the exact form of the generic prop-
erties still follow from the local structure of the intersection W C HE as a closed
Whitney stratified subset (§8).
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Scale-based Geometry for Texture/Feature Discrimination. These results can be
further extended to associated distributions defined by discrimination filters or sta-
tistical methods yielding measures which capture the amount of a property in given
regions of space. In contrast with the results concerning subspaces 7, the oper-
ation ¥ which associates to an initial distribution « an associated discrimination
distribution v = ¥(u) will typically introduce specific scales. Thus, the scales at
which we can expect genericity and stability must be sufficiently larger so that suf-
ficiently many distributions can arise as associated objects. Thus, we consider a
fixed compact subset of scale space C, and ask whether the associated discrimina-
tion distributions will exhibit a given scale-based geometric property genericially
and stably on C. We give sufficient conditions in terms of C, in both an abstract
form (Proposition 10.2) and a concrete one in the case of linear ¥ (Theorem 10.5),
which ensure that there will again be a dense open subset of initial distributions hav-
ing the property that the associated distibutions will exhibit a scale-based property
‘P generically on C' . Because we have established genericity for discrete functions
in (§7), we translate Theorem 10.5 into an explicit condition of being able to ap-
proximate block functions on sufficiently fine mesh by discrimination distributions.
We give a specific simple method for texture discrimination involving integration
against given magk functions on cells of a mesh. For this texture discrimination,
the criterion yields that if the mesh is sufficiently fine (depending on C'), then for
an open dense set of initial distributions, their associated discrimination functions
will exhibit scale-based geometric structures generically and stably on C' (Corollary
10.9).

Multifeature Geometry. Furthermore, we may wish to simultaneously compare the
properties of a number of different geometric features/textures. We do so in two
steps. First, we consider spaces of p—tuple of (uniformly) tempered distributions, or
equivalently RP—vector valued (uniformly) tempered distributions u = (ug, ..., up).
We wish to allow multiple independent scales, so we consider p—tuples of scale—
based multi-kernels G = (G1,...,G,), where there is a single scaling group R¥ ;
however, we allow it to act differently for each kernel G;. Now there is no single
geometric action of the Poincaré scaling group PS on scale space, but rather it acts
coordinatewise on the convolved distributions u x G = (ug * Gy, ...,up x Gp). We

again define the image spaces under convolution ”H,(\’f )G (respectively Hg’ )), which

are products of the individual Ha, g, (respectively Hg;). It follows that the cor-

responding convolution jet spaces ’Hf\’fg (respectively Hg(p ) ) are fiber products of

the convolution jet spaces for the individual kernels. Although there is no geometric
action of PS as for the case of a single distribution, nonetheless, the earlier results

on the structure of convolution jet spaces from (§4) together with the fiber product
representation allow us to conclude that both Hf\f’g and Hé(p ) possess the same
properties as the convolution jet spaces from (§4).

Then, we can apply analogous arguments as in (§5 and §6) to obtain for scale—
based geometric properties of vector— valued distributions, genericity via transver-
sality (Theorem 11.3), local generic structure and stability (Theorem 11.8), and
corresponding results for subspaces (Theorem 11.10). In particular, it follows that
given distinct scale-based geometric properties P; defined by transversality to closed
Whitney stratified sets W (9for the individual distributions u;, and a compact sub-
set C of scale—space, there is a dense open subset of vector—valued distributions u
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for which the u; exhibit P; generically on C' and moreover, the geometric structures
W (u; x G;) will intersect in general position.

To extend the preceding to multiple features of a single initial distribution, we
combine the results of §10 and §11. We obtain a criterion for a collection of p dis-
crimination operators ¥; defined on a subspace T being “generically independent on
C”. We show (Proposition 12.2) that this generic independence implies there is an
open dense subset of initial distributions u € T so that the vector—valued distribu-
tion (¥ (u),. .., ¥py(uw)) will exhibit a scale-based geometric property P generically
and stably on C. Again this translates into concrete criteria in terms of approxi-
mating a collection of independent block functions. The simple method of texture
discrimination can be applied to multiple textures. The criterion implies that if the
mask functions on a given cell for the various textures are mutually independent in
the sense of Corollary 12.5, then the geometric properties of each texture discrimi-
nation function will be exhibited generically on C' with the geometric structures in
general position.

Generic Transitions in Families. The preceding results do not distinguish the scale
parameters, nor consider the effect of varying the extra parameters appearing in
kernels, nor allowing the distributions to depend on extra parameters. All of these
parametrized versions for scale-based geometry are considered in Part 4. The cru-
cial difference is that now, as parameters vary, the generic behavior may fail for
certain parameter values. This is due to the loss of transversality to the closed Whit-
ney stratified set(s). The investigation of this failure and the generic transitions
that result from it can be carried out using more refined methods from singular-
ity theory for an equivalence denoted Ky -equivalence, which captures properties
of nonlinear (nontransverse) sections of varieties V. We explain the general meth-
ods for applying Ky -equivalence, including the use of versal unfoldings to describe
generic transitions in §13. We then investigate how these general methods apply in
the three situations involving parameters already mentioned in §14, §15, and §16.
These include allowing external parameters, and deducing generic transitions in
scale space as was done for relative critical sets for one and two parameter families
in [D4] and [Ke]. Alternately, generic transitions in scale space can be determined
varying scale parameters, as for level surface transitions under Gaussian blurring
[D1] or Canny edges of Gaussian blurred functions in [Ri2]. Third, we consider
transitions which result by varying extra parameters in kernels, as arise in edge de-
tection using edge kernels, optimal parameter height ridges [Fu2], such as optimal
scale ridges [Fr], whose generic properties were determined by Miller [Mi].
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Part 1. Genericity and Stability Theorems for (Uniformly) Tempered
Distributions

In Part 1, we will follow the outline introduced in §1 for establishing the gener-
icity and stability of scale-based geometric properties. To do so we will begin
by investigating properties of convolutions of tempered distributions with kernels
which have scaling parameters. This will be carried out in the framework of “uni-
formly tempered distributions” which can be thought of as “distributions depending
on parameters”.

We begin in §2 by recalling basic properties of both the Schwartz space S,, of
rapidly decreasing functions and the space of tempered distributions §;,, including
many important subspaces. For nonanalysts, we recall basic properties such as
convolutions, distributional derivatives, functions of moderate growth, etc. In §3,
for a parameter space A C RF, we introduce the Schwartz space Sp o of uniformly
rapidly decreasing functions and the corresponding space of “uniformly tempered
distributions”S;, 4, which are not distributions in the usual sense. All of our results
for these spaces will use strong topologies for these spaces.

We show that tempered distributions naturally and continuously extend to uni-
formly tempered distributions (Lemma 3.3). We also show that uniformly tempered
distributions possess properties analogous to those of tempered distributions. Most
importantly, we prove Theorem 3.7, which among other things, proves that convo-
lution with a kernel G € S, 5 defines a continuous linear transformation

a6 Spp = CP(R™ x A)

for the strong topology on S, ; and the regular C*°~topology on C*°(R" x A). Then,
its restriction to S),, denoted cg, likewise defines a continuous transformation.

In §4 we introduce the spaces of G—convolved functions in C*°(R™ x A), which
are the images Ha,g of ca, ¢ (resp. Hg of cg). There are associated convolu-
tion jet spaces ’HﬂG (resp. HE). We explicitly determine the structure of these
spaces, in the case there is a scaling action of a (multiplicative) scaling group }R’i
on R”. This action extends to an associated Poincaré scaling group PS, which
is a semidirect product of R¥ and R". Provided the kernel G satisfies a scaling
condition (Definition 4.1), we deduce from the action of PS that ’Hﬁ’g and H&
are semialgebraic submanifolds of regular jet space, and trivial fiber bundles kernel
over R" x A (Proposition 4.9).

In §5, we introduce the class of geometric properties defined by transversality
to closed Whitney stratified sets. We recall the important properties of Whitney
stratified sets, including the Thom Isotopy Theorem, and its consequences for both
the structure of Whitney stratified sets and their properties under pullbacks by
transverse mappings. Using the continuity of cs, ¢ and cg, the structure of Hﬂ, G
and H&, and the relative transversality theorem in [D2], we prove a transversality
theorem using ’H&G and H¢ (Theorem 5.8). This theorem combined with the
Thom Isotopy Theorem and its consequences allows us to deduce the genericity,
local generic structure, and stability for scale-based geometric structures of G-
convolved (uniformly) tempered distributions (Theorems 5.10 and 5.11).
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2. TEMPERED DISTRIBUTIONS

Distributions in general and tempered distributions in particular are standard
objects in analysis, and their treatment can be found in such standard references as
Schwartz [Sch], Gelfand—Shilov [GS], Rudin [Ru2], and Hormander [H]. However,
because they play such an important role here we briefly mention the key properties
that we will use and refer readers to the preceding references for more details.

Distributions are continuous linear functionals on spaces of functions. We use
standard notation for derivatives; for a multi-index o = (ay, ..., a,), we let DS =
Dgt ... Dgr. Also, we let || = Y7 o

Several of the most important standard spaces are : D = C§°(R"), the C*®
functions with compact support; £ = C®(R"), the C* functions; and S,, the
Schwartz space of rapidly decreasing functions. For &£, we have the topology of
uniform convergence of derivatives on compact subsets defined by the semi-norms

Iflly = sup sup |DZf ()]
2| SN || SN

This defines the regular C*°—topology and € is a Frechet space. D has instead an
inductive topology induced from the subspaces Dk of functions with support in
compact K. It is complete but is not even a Baire space. Third, S,, consists of
smooth functions rapidly decreasing at infinity. This means f € S, iff all semi-

norms py(f) < oo, for N =1,2,..., where
pn(f) = sup sup |(1+|[z[[*)¥Dgf(z)l
2€R" |a| <N

The spaces have continuous inclusions D —+ S — &, yielding continuous maps
of duals &' — S|, — D', where D' are the distributions, £ the distributions with
compact support, and S!, the tempered distributions. Although the inclusions
of the spaces of distributions are set theoretic inclusions, they are not inclusions
topologically. We are mainly interested in the tempered distributions.

Example 2.1 (Examples of Tempered Distributions). (1) Positive Regular

Borel measures of moderate growth p are positive regular Borel measures
on R™ for which there is an integer £ > 0 so that [(1 + ||z|[?)~‘du < .
As a special case we have the subspace of probability measures P M. They
define tempered distributions by u, () = [ ¢du. This extends by linearity
to signed measures g = pu4 — p— with gy and g positive regular Borel
measures of moderate growth. For fixed £ we denote the space of positive
(resp. signed) regular Borel measures by BM, (resp SBM,) using the
variation of (1 + ||z||?>)~‘du as a norm.

(2) For 1 < p < o0, consider measurable functions f for which there exists a
positive integer £ > 0 so that [((1+||z||?)~¢f(z))Pdz < cc. Then, f defines
a tempered distribution by us(p) = [ ¢(z) - f(z)dz. In particular, all L?
functions, polynomials, and measurable functions bounded by polynomials
define tempered distributions. Again for fixed £ and p we let L} denote this
space, using the LP-norm of (1 + ||z||?)~¢f(z).

(3) Positive and signed regular Borel measures of compact support have mod-
erate growth and so define tempered distributions. We add a “c”to denote
these subspaces (BM,. and SBM_.). The probability measures of compact
support will be denoted by PM..
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(4) Distibutions with compact support are tempered distibutions (by the above
inclusion map).

For these examples, the inclusions into the space of tempered distribtutions with
its topology are continuous.

Example 2.2 (Properties of Tempered Distributions). (1) Differentiation by
D, multiplication by a polynomial, or multiplication by a function g € S,,
are continuous linear transformations S, — S,; and induce continuous
linear transformations S;, — SJ,.

(2) The derivative Du of a tempered distribution u is defined by composition
D2u(g) = (=1)1®lu(D%(g)) with D& viewed as a linear transformation of
-

(3) The Fourier transform defines a continuous linear transformation from S,
to itself. Hence, induces a Fourier transform F on tempered distributions

Sy by F(u)(g) = u(F(g))-
Quite generally, smooth functions f are defined to be of moderate growth if for
each multi-index «, there is an integer m and a constant C' > 0 (which depend on

a) such that

(2.1) |IDX(f)(z)| < C(A +||z||>)™  forall xe€R"

For continuous functions to be of moderate growth, we just require that (2.1) holds
for a = 0, i.e. just for the function.

The first importance of functions of moderate growth appears in the characteri-
zation of tempered distributions in terms of ordinary operations of integration and
differentiation, as given in [Sch, Chap. 7, §3, Thm VI] and [GS, vol. 2, Chap. II,
4.3].

Theorem 2.3. If u € S], then there is a continuous function of moderate growth
[ and a multiindez o, such that for g € Sy, u(g) = [ f(z)D*(g)(z) da.

The set of smooth functions of moderate growth forms an algebra, denoted Oy
(see [Sch, Chap. 7, §5]). Polynomials are the simplest examples of functions of
moderate growth. Multiplication by a fixed function f € O again defines a con-
tinuous linear transformation of S,,, so that tempered distributions can be multi-
plied by functions in Ops by composition with the associated linear transformation
(f - ulg) = u(f - 9))-

More generally, we say a function f = (f1,...,fp) : R* — RP is of moderate
growth if each coordinate function f; is of moderate growth. We say that a dif-
feomorphism ¢ of R” is of moderate growth if both functions ¢ and ¢ lare of
moderate growth. We have the following basic consequence for composition of a
function in §,, with a diffeomorphism of moderate growth.

Lemma 2.4. If g € S,, and ¢ is a diffeomorphism of R" of moderate growth, then
gow €S, and the map g — g o ¢ is continuous.

Proof. The argument for this is a standard type argument involving the estimates
of derivatives, however, there does not seem to be a standard reference. It will
follow from a more general form to be given in Lemma 3.5. O

In the case of ordinary distributions, the pullback of a distribution w by a dif-
feomorphism ¢ is defined as follows (see [H, Thm 6.1.2]).

(2.2) " (u)(g9) = u(ldet(dp™" (¥)] - 9(¢~ ' (1))
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If  is a diffeomorphism of R" of moderate growth, then we may consider (2.2) for
a tempered distribution u. We see that ¢*(u) is given by composition of u with
two continuous linear transformations of S,,. The first is given by composition of g
with ¢!, and is continuous on S, by Lemma 2.4. Also, |det(dyp1(y))| € O and
multiplication by this function defines the second. Thus, the RHS of (2.2) defines
an element of S},.

The other operation which plays such an important role for distributions is con-
volution. Let 7, denote translation by z on R” | and let §(z) = g(—=z). Then, convo-
lution of a tempered distribution v and g € S,, is defined by (u* g)(z) = u(r2g(y))-
Then, important properties of convolution are the following.

Theorem 2.5 (see [Ru2, Thm. 7.19]). Suppose g € S,, and u € S,,, then

(1) ux* g is smooth of moderate growth (and hence uxg € S, );
(2) DZ(uxg) = Dg(u) xg = uxDg(g);

The Strong Topology on S!,. There are two standard topologies on S), the strong
and weak* topologies. All of our results will concern the strong topology which we
next recall.

Suppose B C S, is a bounded subset (in the sense of topological vector spaces,
so for any open neighborhood V' of 0, there is an sy such that for s > sq, B C s-V).
If € > 0, then if B is a closed bounded set,

U(B,e) ={u € S) : lu(g)| < ¢ for all g € B}

is a basic open neighborhood of 0 in S),. For a sequence b = (bg,b1,...,) of
positive numbers, B(b) = {g € S, : pn(g) < by for all nonnegative integers N}
is a closed bounded set; and for any bounded set B there is a sequence b such
that B C B(b), so that U(B(b),e) C U(B,e). These neighborhoods define by
translation a topology on S),.

For this strong topology, the inclusions of all of the important subspaces we have
already mentioned are continuous.

3. SCHWARTZ SPACE OF UNIFORMLY RAPIDLY DECREASING FUNCTIONS AND
UNIFORMLY TEMPERED DISTRIBUTIONS

Because we want to consider functions depending on parameters, we extend the
notion of rapidly decreasing function and tempered distribution to allow both to
depend on parameters. We consider an open subset A C R* | and smooth functions
on R” x A. Eventually we consider functions (and distributions) mapping to RP
(see §§11 and 12). We let A denote coordinates for R¥ and distinguish derivatives
by subscripts Dy denoting derivatives with respect to the z—variables, and DY,
derivatives with respect to the A—variables.

We suppose that we have compact subsets K,, C A,m = 0,1,2,..., such that
Ky, Cint(Km+1), and UK, = A. We define semi-norms for f € C®°(RY x A).

pnA(f) = sup sup  sup |(1+||z||*)V|Dg DR f(z, N
z€R™ AEKN |a|,|B|I<N

We say that f is uniformly rapidly decreasing if all semi-norms py A (f) < oo.
We then define the Schwartz space of uniformly rapidly decreasing functions S, s
to consist of the uniformly rapidly decreasing functions with a topology given by
the collection of semi-norms py s, N > 1. By the same arguments as for Schwartz
spaces Sy, the Sy o are Frechet spaces.
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Example 3.1. Both the standard Gaussian kernel

Ki(z) = = exp(_”$||2)
(4mt)2 4t
and, for any symmetric positive definite matrix A, the “anisotropic” Gaussian kernel
1 1 - <z Az >
K = ———(det(A))= —
Hx) = gy et ) exp(“=HEE)

belong to Spr,, where Ry denotes the positive numbers. Thus, any derivative
D2D}(K(x)) also belongs to Spr.. The standard and anisotropic Gaussian ker-
nels (along with their derivatives) are the simplest examples of scale-based kernels
to be defined in §4.

Let 7 : R” x A — R™ denote projection; and for some A9 € Ky, we have inclusion
i:R" - R" x A sending z — (z,)¢). These maps induce an inclusion 7* : S,, C
Sp,a (for which S,, has the subspace topology) and a projection ¢* : S, A = S, s0
that i* o 7* = id. Thus, S, can be viewed as a closed subspace which is a direct
summand of S, A. However, we shall next see that this by itself does not imply
that the space of tempered distributions forms a subspace of the space of uniformly
tempered distributions.

Definition 3.2. A uniformly tempered distribution u is a continuous linear trans-
formation u : Sp.4 = C*°(A), where C*°(A) has the regular C*°—topology.

With this definition, a uniformly tempered distribution is not a distribution in
the usual sense; however, it will provide a framework for convolving with parameter
dependent distributions, and allow other parameter dependent operations. We
denote the space of uniformly tempered distributions by S;‘;’ A

We first show that the tempered distributions can be viewed as uniformly tem-
pered distributions, defining an inclusion map S;, — S;, , which is continuous.
Thus, we must say what the topology is on S, 4.

The Strong Topology on Sy . To define the strong topology on Sj 4, we do so by
viewing it as a space of continuous linear transformations between Frechet spaces.
To define a basic neighborhood of 0, we let M be a nonnegative integer, ¢ > 0,
and B € S,.4, a closed bounded subset. For S, a, we modify the definition of
B(b) given in §2 as follows. For the sequence of positive numbers b = (bg, b1, ..., ),
B (b) consists of those g € Sy 4, such that pya(g9) < by for all N. Let V(M,¢) =
{g € C>(A) : |lgllmr < €}. Then, a basic open neighborhood of 0 € Sy, ; has the
form

U(M,B,e) ={u € S} 5 : u(g) € V(M,e¢) for all g € B}

for B a closed bounded set. If B C By(b), then U(M,Ba(b),e) C U(M, B,¢).
Again, the topology is obtained by translating these local neighborhoods.
We are now in position to define and prove the continuity of the inclusion.

Lemma 3.3. A tempered distribution u € S}, extends to a uniformly tempered
distribution G by defining 4(g)(A) = u(g(x, \)), where for fixed A € A, g(z,\) € Sp,.
Moreover, the induced map S, — S, a» sending u — 4, 18 continuous.

Proof. First, by induction on |a|, we establish

3.1) DX (a(9))(A) = (DX (9) (=, A))
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Since D (g9) € Sp,a, it suffices to establish (3.1) for a single partial derivative
Dy, (u(g)). In this case, it is sufficient to show

" (g(w, Ao +0Xi) — g(z, Ao)
O\

Here 0A; denotes an increment for A;. We denote the function inside u in (3.2)
by h(z,Xo,0A;). We want to show that h(z, Ao, d);) as a function of = (for fixed
Xo) approaches 0 in S, as dA; = 0. We actually show more that h(z, Ag,dA;) as a
function of (x, Ag) approaches 0 in S, A as dA; — 0.

We replace g by g1 = D;"Df (g9), and denote the corresponding h by h;. Then,
by the remainder for the first order Taylor expansion,

192 n
2 6A2

where Ay — Ag = 8- d)\; for 0 < 0 < 1 If we choose an N so B,.(\o) C Ky, and
multiply (3.3) by (1 + ||z||*)Y, then for |6);| < r,

(3.2) —Dxi(g)(%)\o))> 40 as Bk =0

(3.3) DEDR(hy) = (@, A1) - (6X;)

sup sup ((1+ [l2]?)¥|Dg D (k)
z€R™ |al,|B|<N

0%g O
< sup sup 1+||a:|| |D°‘Dﬁ( )|>| |

o zeR"\a\,\ﬁK 6’\2 2
< pny2,alg)-
or
o\
(3.4) pNA(h1) < pNi2,a(g) - | D) |

Thus, for g in a bounded neighborhood, py.a(h1) — 0 as 6A; — 0 for all N so
hi = 0in S, A. However, if we view g and h; as functions of x, with A, fixed, the
preceding argument also gives
6]

2

(3.5) pn(h1) < pN+2(9) -

implying h; — 0 in S,,, establishing (3.1).
Next, we show that @ : S, 4 = C*°(A) is continuous. Given any positive integer
M, from (3.1),
(3.6) sup sup |Df(a(g))| = sup sup [a(DR(9))|
AeKn |BI<M XeKw |BI<M
As u € 8], that there is an integer N and a constant C' > 0 such that |u(g)| <
C -pn(g) for all g € S,,. Thus,

la(g)llm < sup sup C-pn(DR(g))
AEKwm |BI<M
(where we view g as a function in S, for various values of \)

(3.7 < sup sup sup sup C(1+||$||2)N)|D‘;Df(g)|

T 2€R" AEKym |a|<N |B|<M
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Thus, for all M,
(3.8) la(g)lm < C-pnim,a(g)

From (3.8) follows the continuity of .

It remains to show that the inclusion i: §;, < S , is continuous. By linearity,
it is sufficient to establish continuity at 0, so let U(M, B(b), ) be a basic neigh-
borhood. We seek a neighborhood U(B(b'),e) of 0 in S], which maps by ¢ into
U(M,B(b),e). We let by = bnym. If uw € U(B(b'),e), then we wish to show
|@(g)||amr < € for all g € Sy a for which pya(g) < by for all N. First, ||@(g)||ar is
given by the LHS of (3.6). It is sufficient to show that for each fixed A € Ky and
18] < M, [@(D%(9))(= [u(D5(9))]) < &. Thus, as u € U(B(b'),e), by (3.6), it is
sufficient to show pN(Df'\a (9)) < bly for all N and each fixed A € Kjr and |8 < M.
By (3.7), this is implied by pyyar,a(g) < bly. Since by = by4ar this follows from
pn.A(g) < by for all N, proving continuity of the inclusion. O

The advantage of Sj, 5 is that we may perform certain basic parameter dependent
operations as for tempered distributions. First, the analogue of Example 2.2. Since
we will not be concerned with Fourier transforms we concentrate on the other
properties
Lemma 3.4 (Properties of Uniformly Tempered Distributions). (1)  Differen-

tiation by D;‘D’f, multiplication by a polynomial in x with coefficients
smooth in A, or multiplication by a function g € S, o are continuous linear
transformations Sp.a — Spa; and induce continuous linear transforma-
tions S, p = Spp-

(2) The derivative DSu of a uniformly tempered distribution u is defined by
composition D&u(g) = (—1)*lu(D%g), with DS viewed as a continuous
linear transformation of Spa.

(3) The derivative Dy, (u) is defined by Dy, (u)(g) = D, (u(g)) — u(Dyx,(g))

The proofs follow as for tempered distributions, but using uniform bounds on
compact subsets of A; except to define Dy, (u), we make use of the relation which
holds in the case u is a differentiable function

Di, / w(z, N)g(z, \)dz = / D, (w)(z, \)g(z, Nda + / w(@, \)Dx, (9) (3, Nda

In 1) of Lemma 3.4, we may replace polynomials by smooth functions of uni-
formly moderate growth. By a smooth function f(z, A) being of uniformly moderate
growth, we mean that it satisfies (2.1) uniformly on compact subsets K,,. Specifi-
cally, for each integer N and pair of multi-indices & and 3, with ||, |B| < N, there
is an integer m and a constant C' > 0 (which depend on N, e and ) such that

(3.9) sup |D;"Df(f)(:zs,)\)| <C(1+|lz)H)™ forall zeR"®
AEKN

Then, we say a smooth mapping ¢ : R* x A — R x A of the form ¢(z,\) =
(p1(z, A), - - on(z, A), 01 (A), ..., 9} (N)) is of uniformly moderate growth if each
; is of uniformly moderate growth and ¢} are of moderate growth. Also, ¢ will be

a diffeomorphism of uniformly moderate growth if both functions ¢ and ¢~ are.

Lemma 3.5. If g € Sy a and @ is a diffeomorphism of R* x A of uniformly moderate
growth, then go ¢ € Sy A and the map g — g o ¢ is continuous.
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Proof. We denote coordinates (z', ') = p(z,A). First, applying the definition of
uniformly moderate growth to ¢; viewed as zero-th derivatives gives

(3.10) sup [lp(z, Al < C(1 + [|=]*)™
AeKn

or for A € Ky,

(3.11) L+ [l2[I” < C'((1 + [|=))™

A similar equation holds in the reverse direction interchanging x and z' for different
constants C” and m".
Also, applying the definition of moderate growth to ¢}(\) gives

(3.12) D' NI < Cn - @+ [AIP)™  forall | <N

for appropriate constants Cx > 0, my, and all A € A. Then, we can relate A and
X by

(3.13) L+ (V]2 < e+ InH™

with a similar equation holding in the reverse direction.

Using the formula for the higher derivative of a composition (see e.g. [Rg]), We
may write
(3.14) D%(goyp)(@)= > gD (9)(¢(«) D" (pi)(@)--- D (03,))(x)
|Bl=|a|+1
where 8 = (b, ..., B;) with all |3;] > 0, and the coefficients cg are independent of
g and . Here, to keep notation within bounds, we denote ¢} by ¢,4+; and do not
distinguish between the derivatives with respect to the z; and );

Hence, if |a| < N, then by the uniform moderate growth of ¢, there is a constant
C' and a positive integer M so that

(3.15) sup sup sup |D;"D'f\a(cp,)(a:)| < C'(AH+ ||2HM
AeKn 1<i<n |al,|B|<N

By (3.12), this equation is also valid for ¢ > n. Then, by (3.14) and (3.15) we obtain

(3.16) (L + [l |D(g © )(x)

< sup sup < sup (1+[|z[I*)Y|D*(9) (e (2, V)] -
zeR™ AEKN \ |7|<]|]

sup sup |D5(<pi)(:v,A)|N)
1<i<n [§|<N

<C"sup sup sup ((1+[|z[*)¥ VMDY (g)(a")])
2€R" AeKn /<ol

<Gy sup sup sup ((1+ 2! [2)" VM| DY (g) (o))
z'€R™ ACKN |7|<|a

<pnr,a(9)
where N = m/(N + NM).
By (3.16),
(3.17) pN,A(go @) < Cs-pnr,a(g)

This establishes both that g o ¢ € S, A and the map g — g o ¢ is continuous. O
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We can now use the analogue of (2.2) to define the pullback of a uniformly tem-
pered distribution u. Let ® be a diffeomorphism of uniformly moderate growth of
the form (z', N) = ®(x, ) = (p(z,)),¢'(N)) . For fixed A, p(z,A) is a diffeomor-
phism of R", whose inverse we denote by ¢ ~!. Then, exactly as for (2.2), we define
the pullback so it agrees with the pullback of functions via the change of variables
formula for multiple integrals.

Definition 3.6. If u € S}, \, and h € S, A, then we define the pullback of a
uniformly tempered dlstrlbutlon u by the diffeomorphism of uniformly moderate
growth ® by the formula

(3.18) @ (u)(h) = u(| det(dp™" ()| - ho 87" (y,A))) 0 ¢’

It follows from Lemma 3.5 that the RHS of (3.18) defines a uniformly tempered
distribution. In the case ¢’ = id, (3.18) has the same form as (2.2).

Properties of Convolution of S;, \ with Spa. We consider the convolution of a
uniformly tempered dlstrlbutlon u € S;, p with a function g € Sp . Recall 7,
denotes translation by z on R", and as for the case of convolutions of distributions,
we let g(z,\) = g(—z,N). Then, by Lemma 3.5, convolution is again deﬁned
by (u* g)(z,\) = u(7:9(y,A)). The important properties of convolution are the
following.

Theorem 3.7. Suppose g € Spa andu € S, 4, then

(1) u =g is a smooth function on R™ x A of uniformly moderate growth (and
hence ux g € Sy, \);
(2) Dz(uxg) = Dg(u)*g =uxDg(g);
(3) However,
Dj;(u*g) = Dy, (u) * g +ux Dy, (9);

so only if u € 8!, do we have Dy, (u* g) =ux Dy, (g).
(4) For G € Sy.a, the associated convolution map

(3.19) ca, G Spa = C7(R" x A)

which sends u — u x G, is continuous for the regular C* topology on
C>(R™ x A).

Proof. By definition (uxg)(z,A) = u(7.G(y, A)). Both 7, and y — —y are (trivially)
diffeomorphisms of uniformly moderate growth. Thus, viewed as a function of y
with parameters (z,)), 7,9(y,\)) = g(y — x,\) is by Lemma 3.5, a function in
Sn,rrxA. First, we can apply an extension of Lemma 3.3.

Lemma 3.8. Let I C R’ be open. A uniform tempered distribution u € Sha
extends to a uniformly tempered distribution @ € S}, x . by defining @(g)(A,v) =
u(g(z, A, 7)), where for fized vy € T, g(x,X,7) € Sp,a. Moreover,

(3.20) D3 (a(g))(A, ) = w(DF(9)(, A,7))

The proof of this Lemma is virtually identical to that of Lemma 3.3.

As a consequence of Lemma, 3.8, we conclude that u(7,§(y, A)) viewed as function
of (x,A) is in C°(R™ x A). Also, both 2) and 3) follow by (3.20) and the definition
in 2) and 3) (of Lemma 3.4) of the derivatives for a uniformly tempered distribution.
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It remains to show that u * g has uniformly moderate growth and 4) that con-
volution defines a continuous map. For these we adapt an argument in [Ru2, Thm
7.19]. The inequality

(3.21) L+]z+y? <20+ )0+ |yl
implies
(3.22) pNA(Te(h) <2V + |2*)Vpya(h)  forall z € R™ and h € Sy a

Now, if u € S 4, then given a nonnegative integer M, there is an integer N and
a constant CMN such that [|u(h)||a < Cum,n - pn,a(h) for all b € S, a. Then, let
laef, 18] < M.

(3.23) D DR (uxg)(w,\) = D§ (uxDg(g))(x,A) = (-1)*' D (u(r, D (9)) (v, N)))

First, from (3.23) and (3.22),

sup |DF DY (uxg)(z, )| = sup DR (u(r:Dyg(y, N)))|
AeK M AEK M

< lu(rz(Dy g(y, M)l v
<2YCun (1 + |2*) Vi a (D (9))
(3.24) <2VCun(1+ |2*)Vpnyar,alg)  for all z € R?
Thus, by (3.24) u * g has uniformly moderate growth.
For continuity, we consider g in place of G to be consistent with our earlier
notation, so we will establish the continuity of ca, 4. Given a neighborhood V =

V(M,e), we seek U = U(M, B(b),e) so that u € U will imply u* g € V. From the
first two lines of (3.24), we alternately obtain

(3.25) sup sup |D°‘Dﬁ(u*g)(z‘ A)| = sup sup |D u(Tz(D g(y, \))|
|z|<M AeKum |z|<M Ae

As u € U, from (3.25), we can conclude ||u * g||;s < € provided for any fixed
llzl| < M, pna(T:(D5g(y,A))) < by for all N. However, by (3.22)

sup p,a(1e(Dg(y,N) < sup 2V (1 +|z[*)Npna(DSg(y, V)

z|<M |lz|<M
(3.26) <2V oryn o a(DSg(y, N)
where ry; n = (1 4+ M?)N. Also,
(3.27) pva(Dyg(y,N) < pryaalg)
Thus, if we define b by by = 2V - 737 n - pny a4 (g) for all N, then from (3.26) and
(3.27), ||lu = g||m < €, proving that ¢y, 4 is continuous. O

As a corollary of Theorem 3.7 and the continuity of the inclusion S/, — SpA
(Lemma 3.3), we obtain the continuity of ca, ¢ restricted to S,.

Corollary 3.9. Suppose G € S, A and u € S}, then convolution with G, u — uxG
defines a continuous map (for the regular C>®—topology on C*(R™ x A))

(3.28) cg 8, > C®(R" x A)
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4. SCALE-BASED KERNELS AND THE STRUCTURE OF CONVOLUTION JET SPACE

We introduce scaling properties and generalized scale space. Using the maps ca, ¢
and cg, we introduce the spaces of G—convolved functions and the corresponding
convolution jet spaces. We show that scaling properties for kernels G allow us to
determine the structure of the convolution jet spaces.

Scale Space and the Poincaré Scaling Group. We begin by introducing a gener-
alized scale space which allows for multiple independent scales. For this we now
concentrate on the special case of A = R¥ . We define RE = Ry x --- x Ry with
k factors. Then, under coordinate-wise multiplication, Rﬁ is a group. We suppose
we are given an action of R¥ on R™ given by an n x k matrix A = (a;;) of real
numbers. For 0 = (o1,...,0%) € RE and 2 = (z1,...,2,), then

(4.1) a-:c:(Ha?”:cl,...,Ha;""xn)
J J

We shall on occasion denote this action by the representaton p : RE — GL(R").
The entry a;; denotes the “weight”of the action of the j—th scale parameter o; on
z;. Generally, we will be most interested in the case where the weights are positive
rational numbers. We refer to A as the weight matriz for R™.

Combined with the action of Ri on itself by left multiplication, we obtain an
action of R% on R" x R% by o - (z,\) = (0 - 2,0 - X). We refer to R x RY as
(generalized) scale space.

We denote the diffeomorphism induced by the action of o € R’i by ¥,. Also, we
view R” as an additive group and let the translation action of z € R™ be denoted by
Tz- Then we can form the scaling analogue of the Poincaré group by the semi—direct
product PS = R x R™ with multiplication

(o1,21) - (02,22) = (01-02,01 22+ 1).

Then, the Poincaré scaling group PS acts on scale space by (o, z) — 7,0 ¥,. Next,
we introduce scaling properties of kernels with respect to the action of PS. We first
consider the special case that G is a “scale-based kernel”.
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Scale—based Kernels.

Definition 4.1. We say that G € S"Ri is a scale—based kernel if there is a k—tuple
B = (By,...,By) so that

(4.2) G(o-(z,)) =0"G(x,))  where o =[]/

We call B the scale weight of G.

Example 4.2. For the standard or anisotropic Gaussian kernel given in Example
3.1, we substitute t = 02, so K(z,0) = K 14>(x). This gives a scale-based kernel
with single scale parameter o (the standard deviation), with B = —n and all weights
wt (z;) = 1.

We extend this a multi-Gaussian kernel as follows. Let n = >_._, n; for positive
integers n;, and consider the decomposition R* = @]_; R™ where z = (@, ..., z(™)
with z(® = (:cgi), .. ,msf)) Then, the multi-Gaussian is given by the product of
Gaussian kernels [[ K (z®, ;) with scaling parameters (o1, ...,0,). This would
allow independent scales ¢; on the distinct subspaces R™.

The standard Gabor filters G¢(z) = cos(au - z + b) exp(— ”in), where u is a
unit vector, are not scale-based kernels; however, there is a scale-based version
Gi(z) = cos(a“—\ff + b) exp(—%) where ¢ = 102 with weight wt (o) = 1 and
weights of all z; equal 1.

There are two basic properties of the class of scale-based kernels: preservation
under taking derivatives and under pullbacks by group homomorphisms.

Lemma 4.3. Suppose G is a scale-based kernel with weight matriz A, and scale
weight B, then:

G
(1) . is again scale-based for the same weight matriz A, and scale weight
Zi
B' = B — A;, where A; = (a;1,---,ai) (the weight vector for x;).
(2) e s again scale-based for the same weight matriz A, and scale weight

B'=B- €i, where g; = (0,...,1,0,...,0) with 1 in the i—th position.

Proof. By differentiating (4.2) with respect to z;, we obtain

0G(o - (z,N)) 5 O0G(z, )
TG A GBI A
. 0G 0G(z, \)
A A _ 4B >
(4.3) o oz, (0-(z,N) =0 oz,
Dividing (4.3) by t4¢ gives i). An analogous proof yields ii). O

Example 4.4. By Example 4.2, the standard and anisotropic Gaussian kernels
K(z,0) = K1,2(), the multi-Gaussian kernels, and the scale-based Gabor filters
G 1,2 () are scale-based kernels; hence by Lemma 4.3, all of the derivatives are also
scale-based. This includes for example, the median filter

0K (z,0)

M@,0) = —o-—>— (=-0"-A(K(z,0)))
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and is often referred to as the Mexican hat function (see e.g. [Db]). As well it

0K (z,0)

includes the “edge detection kernels”, given by the directional derivatives ,

u
where u is a unit vector, but B = —(n + 1). The one—dimensional profiles of these
kernels are shown in Fig. 3

a) b) c)
| NV /\/

FIGURE 3. Profiles of a) Gaussian Kernel, b) Medial Kernel, and
c) Edge Kernel for a fixed o.

Second, we show the naturality of scale-based kernels under composition with
group homomorphisms p' : R — Ri of the form

(4.4) P01, . 0%) = ,Cl’ - H o)
j

We let C' = (¢;;) be the matrix associated to p’. Typically in our situation the ¢;;
will be nonnegative rational numbers. Then, given a scale-based kernel G for the
scaling group Ri via the representation p on R”, we first define an action of Ri' on
R”™ by pop’. Then, we define the “pullback”of G by p' by p'*G(z,0') = G(z, p'(¢)).
Lemma 4.5 (Naturality under pullback). Suppose G is a scale-based kernel for the
scaling group R’i via the representation p on R™, with weight matriz A, and scale
weight B. Let p' : Ri' — RE be a homomorphism of the form (4.4) with matriz

C. Then, p'*G is again scale-based for the scaling group R’i via the representation
pop on R™, with weight matriz A - C, and scale weight B - C.

Proof. First, p'*G = G o (idr» X p') and p’ viewed as a function is smooth and has
moderate growth. Hence, as G € S, 5, so also p'*G € S}, |
Next, we compute

prG(o" - z,0"- N) = G(p'(0") - @, p' (0" - X))
=G(p'(d") -z, (") - (X)) = (p'(0") - Gz, p'(\))
= (p'(o")” '*G(w,/\')
Then, it is straightforward to see that (p'(c'))f = (¢/)BC, so the scale weight is

BC, and that the matrix of po p' is AC. a

If we pullback a multi-Gaussian kernel, then we obtain a kernel which typically
will have the scales mixed so scales affect different corrdinates in different ways.
More important is the interaction of scales for multiple kernels which we consider
in Part 3.
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K
Example 4.6. In Example 4.4, if we pullback the edge detection kernel m

u
by the homomorphism p'(c1,02) = o1 - 02, it becomes the kernel Mﬁl'@).
Along with the medial kernel M(z,01), we have two kernels which are scale-based
for different scaling group actions. If we fix o2, then we obtain kernels scale-based
for a common scale parameter o;. This is one of the methods used by Pizer, Eberly,
et al. [PEM]. They fixed the ratio o2 between the edge detection and the medial
scales. However, in reality this ratio can vary for different parts of objects. This
variance together with the scale variance of the object is captured by the scale
parameters (01,02). In part 3, we show how we may allow multiple independent
scales for multiple features with different scaling properties for each object, as
illustrated here.

We next give a proposition which relates pullbacks of distributions under the
scaling action. We consider 0 = o()) : A(= RE) — RE a smooth function of
moderate growth such that (z,\) = (6()\)-z,0()\) - A) defines a diffeomorphism of
R™ x RE . We also consider the diffeomorphism of R™ x RE : 9, (2, X) = (0(A) -z, A)
(note that for fixed ), 9, restricts to a diffeomorphism of R which we still denote
by ).

Proposition 4.7. Suppose G is scale—based with weight matriz A and scale weight
B. Then, for u € S}, ,

(4.5) T*(u*G) = o(N) BT ((gru) x G)
where |A| is the k-tuple given by |A| = A1 +---+ A,.

If we consider the case where o is constant, then ¥ = ¥, defined earlier.

Corollary 4.8. Suppose G is scale-based with variable weights A and scale weight
B. Fix o € Rﬁ_. Then, for u € S} 5

(4.6) U; (uxG) = B ((Yru) «G)

Remark . Before proving the proposition, we note that in the special case u € S},
and B = —|A|, we obtain the Scale invariance of distributions under pullback:
(4.7) Wiu)*G = (uxG)o ¥ (= T*(uxQq))

This asserts that if we scale u and convolve then we obtain the same answer as first
convolving and then scaling both the space and scale variables.

We observe that Gaussian kernels in Example 4.2 are scale—invariant by Example
4.4. Also, by Proposition 4.7, the medial filter given by the mexican hat function is
scale-invariant. In general if we multiply the scale-based kernel G by ¢~B~14l then
it becomes scale—invariant. Hence, if we multiply the edge filter by o, it becomes
scale invariant; and after multiplying the scale-based version of the Gabor filter by
o~ ", it becomes scale-invariant.

Proof. We represent U = (t1,¢2), with ' = ¢1(z) = ¢, (z) = o(A) -z, (¥ =
¥1(y)), and X' = 1p5(A) = () - X\. Then, we evaluate the RHS of (4.6) applied to
(z, ) = T 1(z', \).

(Wyu) G o U1 (z', ) = (Yju) * G(z,N)

= (You)(12G(y, A))
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where to apply ¢*u, we view 7,G(y,\) = G(z —y,)) as a function of (y,\) for
fixed z

= (Y5u)(G(z —y,N)
(4.8) = u(| det(dyy, V)| - Gz — 9,1 (¥'), N)

This last equality follows from the definition of pullback Definition 3.6 and (3.18),
as Y, (z,\) = (0 -z, \).
Since 1! is given by the action of 0!, we compute, recalling A; = (a;1, - - -, aix),

(4.9) | det(dep; Hg i = g4l

We multiply (4.8) by ¢®+4l and apply (4.9). We note that 1), is linear in & and use
the definition of multiplication of a uniformly tempered distribution by a function
of moderate growth (as 0 = o()) is a function of A).

(410)  oPHA((Wru) x G) 0 T (@', X) = u(@P T 0T Gy, (o' —y'), )
Applying the scale-based property of G to (4.10), we obtain
o Pt (Yru)  G) o T (@, N) = w(G(o(N) - 95 (2" = y'),0(A) - A)
(4.11) =u(G(z' — o, )\'))—u*G(x )
where in the last equation we used that ¥ is given by the action of o = o(\) (so

that A = 1h2(\) = o(X) - \). O

Action of the Poincaré Scaling Group. As a result of Corollary 4.8, we can describe
the action of the Poincaré scaling group PS on convolutions.

In Theorem 3.7, we defined for a fixed G € S,,,4 a continuous linear transforma-
tions (3.19) sending u — u * G.

e, G Spa = CP(R" x A)
and the corresponding restriction
cg: S, = CP(R" x A)

Hence, the image of ca, ¢ is a linear subspace of C*°(R™ x A), which we denote by
Ha,c- This is the space of G—convolved uniformly tempered distibutions. Likewise,
the image of cg is a linear subspace of C*®°(R" x A), which we denote by H¢. This is
the space of G—convolved tempered distibutions. We refer to these as spaces of G-
convolved distributions. We define the action of PS as a subgroup of Diff(R" x Rf )
acting on C*°(R"™ x ]Ri) by - f = fop~!. To determine the action on convolutions,
we first recall that convolution commutes with translation,

7w G) = (7Fu) * G.

Thus, we compute the action of (o,x) € PS on a convolution by

(T2 0¥,) - (u*x Q) = (12 0 ¥) ) (ux G)
— (B (ux G)
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Hence, by applying Corollary 4.8
= oPHA (7, (Y5-1u) ¥ G)
(4.12) = P ((((12 0 90) ™) u) % G)

The action of elements of PS define diffeomorphisms of (uniformly) moderate growth.
By (4.12) together with Lemmas 2.4 and 3.5, we conclude that the action of PS on
C*®(R"™ x A) restricts to an action on Ha, . We also note that as in Corollary 4.8,
if u € S, with fixed 0 € R%, then ¢}u € S),. Hence, the action induces an action
on both Hp, ¢ and Hg.

We next see the role of scaling properties for determining the structure of jet
space for convolved distributions.

Jet Spaces of Conwvolved Distributions HY o and HE. We first construct the asso-
ciated jet spaces.

(4.13) Hie Y U@ : f=uxGlorueSi,}

Recall from §1, the ¢-jet j¢(f)(z,)) is the £-th order Taylor expansion of f at
(z,A). We denote the set of jets in Hf;’G at the point (z,A) by Hﬁ,G(z,A)' We
analogously define H.

We next determine the structure of #§  and H¢, as fibrations over R™ x A for
A =Rk in the special case that G is scale-based. We first concentrate on HS AG

We do so for scale-based kernels by using the consequences of the action of the
Poincaré scaling group PS. Its action on C*°(R" x A) induces an action on the jet
space J¢(R™ x A,R). The induced action of PS on Hx, ¢ and Hg also restricts to
an action on the corresponding jet spaces Hf&y ¢ and H%. This allows us to deduce
the structure of the convolution jet spaces.

Proposition 4.9. If G is scale-based then for A = Rﬁ_, both ’Hé and ’Hf;,G are
(1) trivial fiber bundles over R™ x A, and
(2) semi-algebraic submanifolds of J¢(R™ x A, R).
From Proposition 4.9, if A C Ri, we may restrict to jet spaces over R” x A and
conclude that Hj  is a trivial bundle over R” x A.

Proof. By our above discussion, the action of the Poincaré scaling group PS restricts
to an action on the jet spaces Hﬁ, o and HE commuting with the projection to R™ x
R* (here A = R% ). As PS acts transitively on R x R* | we deduce diffeomorphisms
of fiber bundles

(4.14) Hi, ¢ = HA, G, (mor0) X (R" X RY)
and
(4.15) He ~ HE, (song) X (R* X RE)

where the inverse of this diffeomorphism sends
(3 (f) (@0, o), (w,0) = §(f o (¥ 070) ) (0 - 0 + 7,0 - Xo)
Also, these equations show that both Hﬁ,a and HY are the images of the fibers

Hﬁ’ G, (z0,)0)? respectively ’Hé’ (20,A0)? which are linear subspaces (and hence alge-
braic submanifolds of J¢(R® x A, R)), under the action of the real algebraic group
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PS. Hence, the images are semi-algebraic submanifolds by the Tarski-Seidenberg
theorem. 0

5. GENERICITY AND STABILITY THEOREMS FOR CONVOLUTION OPERATORS

We have already established by Theorem 3.7 and Corollary 3.9 the continuity
of the convolution maps cp,¢ and c¢g for G € S, A with A = Ri. Second, by
Proposition 4.9, in the case of a scale-based kernel G we have established that
the convolution jet spaces H& and ”H,f&G have the structure of globally trivial
fiber bundles. We are now in position to establish theorems regarding both the
genericity and stability of scale-based geometric structures. We will do so in terms
of transversality to closed Whitney stratified subsets.

Properties of Whitney Stratifications. We recall basic properties of Whitney strati-
fications. By a Whitney stratified subset W of a smooth manifold M, we mean there
is a locally finite decomposition of W into disjoint smooth submanifolds W = U;W;,
called strata, satisfying: i) (axiom of the frontier) for any two strata W; and Wj,
with closure W;, if W; N W; # 0, then W; C W;; and ii) Whitney’s conditions a)
and b), which give for a pair of strata W; C W;, a relation between the limiting
tangent spaces and limiting secant lines for W; and tangent space of W; (see e.g.
[M2] or [Gi]). We also say that {W;} is a Whitney stratification of W.

Several of the key properties of Whitney stratified sets are: i) being a Whitney
stratified subset is preserved under diffeomorphisms; ii) orbits of algebraic group
actions, where they are locally finite, form a Whitney stratification; iii) more gen-
erally, algebraic or semi—algebraic subsets have Whitney stratifications with semi—
algebraic strata; and iv) the pullback f=!(W) of a Whitney stratified subset W
by a map f transverse to W, i.e. to the strata {W;}, is also a Whitney stratified
subset with strata {f~1(W;)}.

Second, a fundamental property of Whitney stratified sets is given by
Theorem 5.1 (Thom Isotopy Theorem [Th]). Suppose W is a closed Whitney
stratified set and f : W — R is a continuous proper mapping such that for each
stratum W; of W f|W; — R is a smooth submersion at each point of W;. Then,
for any t1,t2 € R, f~1(t1) is homeomorphic to f~1(t2) by a homeomorphism which
is a diffeomorphism on each stratum f=1(t;) " W;.

First, the Thom Isotopy Theorem has the following consequence for pullbacks of
Whitney Stratifications.

Corollary 5.2 ([M2], [Gi]). Suppose f;: M — N is a smooth homotopy of proper
smooth maps such that for each 0 <t <1, f; is transverse to a Whitney stratified
set W C N. Then, f;'(W) is homeomorphic to fi'(W) by a homeomorphism
which is a diffeomorphism on each stratum.

Second, there are two main consequences concerning the local structure of a
Whitney stratified set W C R™.
Corollary 5.3 ([M2], [Gi]). Let W C R" be a Whitney stratified set. Suppose
Wy is a stratum of W of codimension d, and that x; € W, for i = 1,2 belong to
the same connected component of Wy. If P; are d dimensional affine subspaces of
R™ which intersect W, transversely at x;, then, there is a local homeomorphism
p:UiNW,z1 2 U NW, 22, for appropriate neighborhoods z; € U; C P;.

These normal sections (U N W, z) determine the normal structure of W near a
point z € W,. Second, this local structure can be locally described.
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Corollary 5.4 ([M2], [Gi]). Let P be a normal section through x of a stratum
Wy of a Whitney stratified set W C R™. Then, there exists ¢¢ > 0 such that for
0 < € < €, there is a homeomorphism

B(z)NPNW ~ ¢(S.(z)nPNW)

where Be(x) (resp. Sc(z)) denote the ball (resp. sphere) of radius €; and c(X)
denotes the cone on X.

We shall denote this local normal structure of W near z by Wi,c(z),

Genericity of Properties via Transversality to Whitney Stratifications. We will con-
centrate on closed Whitney stratified subsets W C J¢(U,R) with strata {W;} for
open subsets U C R® x A. For a smooth mapping, f : U — R, there is the “jet
extension map”j¢(f) : U — JYU,R) sending = ~ j*(f)(z). Many singularity
theoretic and geometric conditions can be expressed in terms of transversality to
orbits of algebraic group actions or more generally to semi-algebraic submanifolds
of JY(U,R). Then, by property iv), the pullback of a Whitney stratified subset
of W c JYU,R) by the jet extension map j¢(f) gives a Whitney stratified set
W(f) = j4(f)~1 (W) with strata W;(f) = j¢(f) " (W;).

We are more specifically concerned with closed Whitney stratified subsets of the
convolution jet spaces ’Hf\’ g or ’Hé, for G a scale-based kernel. For an element f

in Ha,c(U)(=Ha,q v),
(5.1) 7)1 U — Ha,6(U) = JU,R)

There is an analogous map as 5.1 for Hg instead. When the G—convolution jet
space is understood, we will abuse notation and denote the composition by j¢(f).

Beginning with a closed Whitney stratified set W C J*(U, R) with strata {W;},
there are two possibilities for obtaining a closed Whitney stratified subset of the
convolution jet spaces. We consider this in more detail in §8. For now, we just
note that if a convolution jet space, say ’HX ¢ is transverse to W, then by property
iv), the intersection W' is a closed Whitney stratified subset of Hﬁ ¢ With strata
{W] = WinH{ ¢} (with an analogous result for 2§;). Alternately, if W C J*(U,R)
is a closed semialgebraic subset, but Hﬁ,g (or H%) is not transverse to W then
Proposition 4.9 allows us to obtain a natural Whitney stratification for the inter-
section (see Proposition 8.1). In this second case, transversality to the intersection
W'in Hﬁ, c or HE need not exhibit the same local structure as for W; however, it
will still define a geometric structure for G—convolved distributions.

First, we introduce the notion of genericity for convolutions of distributions.

Definition 5.5. We say that a property P is generic for G-convolutions of (uni-
formly) tempered distributions, if for any compact subset C C R™ x A there is an
open dense subset of (uniformly) tempered distributions u such that u x G possess
property P at each point of C.

Example 5.6. For G = K;, the Gaussian kernel, K;—convolutions of tempered dis-
tributions are solutions to the heat equation; and the local property P being generic
for Ki—convolutions of tempered distributions is equivalent to it being generic for
solutions to the heat equation on R™ x R, in the sense of [D5].

Based on the above discussion, we give a restricted definition of genericity which
is especially suited for a singularity theoretic approach to scale-based geometric
questions expressed in terms of tranversality of jet extension maps.
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Definition 5.7. Given a scale-based kernel G, we will say a local geometric prop-
erty P is a tranversally defined scale-based property if there is a closed Whitney
stratified subset W C Hf\’a with strata W;, (or respectively W C Hé) such that
f = ux G having property P at all points of a subset C C R™ x A is characterized
by 7¢(f) being transverse on C to W (i.e. to the strata W;), where transversality
is relative to ’Hf\’G (respectively HE). Then, we say that f ezhibits property P
generically on C.

Suppose a property P is defined by transversality to the closed Whitney stratified
W C Hf g or HE. If f = uxG is transverse to W, i.e. j'(f) is transverse to W,
then j¢(f)~1(W) is a Whitney stratified set with strata {j¢~1(W;)}. We refer to
it ~L(W) as the geometric structure associated to P. The individual strata will

J
represent different geometric behavior associated to the property P.

Genericity and Stability via Transversality to Whitney Stratifications. We can now
give a sufficient condition for genericity for scale-based geometric properties.
Theorem 5.8 (Genericity via Relative Transversality). 1) Suppose W is a closed
Whitney stratified subset of Hf\’a with strata W;, then for a compact set C' C
(R™ x A), the set of uniformly tempered distributions

(5.2) W ={u€ S, : j (uxG) is transverse on C to all Wi(in Hj o)}

is an open dense subset of S}, ,.
2) If instead, W is a closed Whitney stratified subset of ’Hg, then

(5.3) W ={u €S :j*(uxQG) is transverse on C to all W;(in HS)}

is an open dense subset of S,.
As a corollary of Theorem 5.8, we conclude

Corollary 5.9. If P is a transversally defined scale—based property, then it is
generic for G-convolutions of (uniformly) tempered distributions.

Proof. The Thom Transversality Theorem does not apply to the space of functions
obtained as G—convolved distributions. We will apply instead a generalization of
Thom’s theorem, the “relative transversality theorem” [D2, Thm. 1.3], which can be
applied to the convolution maps ca, ¢ or cg. As the proofs for both cases are very
similar, we shall concentrate on the case of uniformly tempered distributions. The
relative transversality theorem will imply that given a compact subset C C R™ x A,
there is an open dense subset W C 87 , consisting of u such that j‘(u x G) is
transverse on C' to W in Hf\’ a

To apply the relative transversality theorem, we must show that S}, 4 has “smooth
image”in J¢(R® x A, R) in the sense of [D2, Def. 1.1].

As ca, ¢ is linear, given (29, \o) € R™ x A, there is a finite dimensional linear
subspace V of S;, \ such that the map V — Hﬁ’ G (z0,70) obtained by composing
A, with jfzo’ Xo) 18 surjective. Then, it will continue to be surjective for all (z,N)

in a neighborhood U of (xg, Ag) and then for all subspaces u + V. Thus, for any
u €Sy, with V' =u+V

(5.4) V' xU—Hi ¢
(', (z,A) = §°(u' % G)(z,A)
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maps surjectively onto ’Hf; Gvxu- As ’Hk ¢ is a smooth trivial subbundle invariant
under translation on R™ and the scaling action, we obtain the analogue of (5.4) for
any point (z',\') by translation and scaling action. This implies that ca, ¢ has
smooth image. Hence, the relative transversality theorem [D2, Thm. 1.3] applies
and the set W is open and dense. An analogous argument works for cg. d

Generic Structure and Stability for Scale-based Geometric Structures. Given a scale—
based kernel G, let P be a transversally defined scale-based geometric property
defined via the closed Whitney stratified subset W, with strata {W;}. We can now
deduce the generic properties and stability of W(f) for f = u xG.

Theorem 5.10 (Scale-based Generic Structure). Suppose G is a scale—based kernel
and that P is a transversally defined scale—based geometric property. If f = uxG
exhibits P generically on a compact subset C, then at an interior point (xg, Ao) of
C, there is a strata preserving local homeomorphism

(W(f)s(20,20) = (Wioe(5°(f) (20, 20)) x R™, ((f) (20, X0),0))
where m = n — codim (W;) for j¢(f)(zo, Xo) € W;.

Thus, the products of {Wj,.(2)} with appropriate factors R™¢ provide the local
models for the generic structure associated to P.

Second, we deduce the stability of W(f). Given f = u * G which exhibits P
generically on a compact set C', we may extend C to a slightly larger compact
manifold of dimension n + k with boundaries and corners (in the sense of Mather
[M-II]), on which f still exhibits P generically (by the openness of transversality to
closed Whitney stratified sets). We may further arrange that W (f) is transverse
to the stratification of the boundary 0C. Then, stability takes the following form.

Theorem 5.11 (Scale-based Structural Stability). Suppose G is a scale-based
kernel and that P is a transversally defined scale-based geometric property. If f =
uxG exhibits P generically on a compact subset C (which is an n+k manifold with
boundaries and corners) so W (f) intersects OC transversely, then, there is an open
neighborhood U of u in S, \ (resp. S;,) such that for v’ € U, f' = u' x G eshibits
P generically on C, and there is a strata preserving homeomorphism of C sending
W(f)NnC to W(f')NC, which is smooth on each stratum.

Proof of Theorem 5.10. By Corollary 5.3, (W(f),z) ~ (W(f)ioe(z) x R™,z) for
appropriate m. Then, the composition of a normal section to W(f) at x composes
with j¢(f) to yield a (nonlinear) normal section to W at j¢(f)(z). This (nonlinear
but transverse) normal section and a normal section are smoothly homotopic while
remaining transverse to W at 5¢(f)(z). Hence, by Corollary 5.2 of the Thom Isotopy
theorem, (W (f)ioc(2),2) = (Wioe(5°(f)(2)), j*(f)(2)), yielding the result. a

Proof of Theorem 5.11. Suppose C'is a compact manifold with boundaries and cor-
ners, and f = u * G exhibits P generically on C, with W (f) is transverse to 0C.
To be specific we suppose W C Hﬁ - An analogous argument will apply to H&.
Then, first there is a neighborhood W of u consisting of v’ for which f' = «' * G
satisfies: j¢(f') is transverse to W on C and W (f') is transverse to C. Then, by
results of Mather [M-II] there is a neighborhood V of f in C°(R™ x A) such that
for any f' € V, there is a smooth homotopy f; between f and f’ with j¢(f;) trans-
verse to W on C' and 0C. Then, by Corollary 5.2 of the Thom isotopy theorem,
W (f)NC and W(f')NC are homeomorphic by a homeomorphism which is smooth
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on the strata (and the strata intersected with C). Finally, by the continuity of
cA, ¢ (resp. cg), there is an open neighborhood W' of w € T which maps into V.
Thus, we may replace YW by W' N W to obtain the desired neighborhood. a
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Part 2. Generic Scale-based Geometry for Subspaces of Distributions,
and Discrete Functions and Measures

In this part. we extend the genericity and stability results from Part 1 to many
important subspaces of distributions. To do so, we must impose conditions on
both the scale-based kernel G (condition (A)) and on the subspace 7 (condition
(B)). Then, we prove (Theorem 6.3) that the distributions in 7 will generically
exhibit the same scale— based geometric properties as the full space of (uniformly)
tempered distributions, including the generic local structure and the stability of
the structures. Furthermore, we show condition (B) is satisfied for all of the key
subspaces of tempered distributions (Theorem 6.4), with the exception of the spaces
of probability measures, for which the results are still shown to hold by (Corollary
6.5).

In §7, we further consider genericity results for discrete and piecewise linear
functions and discrete measures. We establish the density of the set of discrete
functions and measures which generically exhibit a scale-based geometric property
on a compact subset of scale space. Furthermore, we show that for a given compact
subset C of scale space, there is a single refinement of the mesh and enlargement of
the region, so that any nongeneric discrete function or measure can be approximated
by another discrete one with generic properties on C. (Theorems 7.6 and 7.8).

6. SUBSPACES OF TEMPERED DISTRIBUTIONS

Theorems 5.8, 5.10, and 5.11 have established genericity and stability of transver-
sally defined properties P for spaces of tempered and uniformly tempered distribu-
tions. They guarantee that for a compact subset C of scale space, there is an open
dense subset of (uniformly) tempered distributions whose G-convolved functions
exhibit P generically and stably on C. We are also interested in various subspaces
of distributions such as L? functions, functions in Sobolev spaces, functions of mod-
erate growth or of compact support, and measures such as positive regular Borel
measures, probability measures, etc.

Unless a subspace forms an open subset of the space of (uniformly) tempered
distributions, we cannot conclude from Theorem 5.8 that genericity also holds for
the subspace. Hence, we can conclude nothing about these particular subspaces of
tempered distributions. Nonetheless, we claim that the conclusions of Theorems
5.8, 5.10, and 5.11 are equally valid for all of these subspaces. We give a general
criterion which will yield the same consequences and which will apply to all of the
subspaces we have mentioned. Second, in §7 we give a formulation of how the
discrete objects also have discrete approximations which exhibit these properties
generically.

We consider a scaled-based kernel G. We shall either consider Ha, g or Hg.
Hence, we use the notation (S*,H,H’) to denote either triple (S, Hg,HE) or
(SpasHa,aHE )

Definition 6.1. We say that the scaled—based kernel G satisfies condition (A) if
there is (zg, A\g) € R™ x A and a finite dimensional subspace V consisting of smooth
functions of (uniformly) moderate growth such that the composition is surjective.

4
Vv — H(Eo,/\o)
h = §h*G) (o, o)
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We shall see in §9 that using the local basis for solutions to the heat equation
given in [D1], we can establish condition (A) for the Gaussian kernel and large
class of “extended Gaussian kernels” which includes the median kernel, edge kernel
as well as many other kernels derived from the Gaussian kernel allowing anisotropy,
derivatives, and mixed multiple independent scales.

Along with the condition on G, we also have a condition on the (not necessarily
linear) subspace 7 C S*. We do not suppose that 7 has the subspace topology,
but only that the inclusion is continuous.

Definition 6.2. A subspace 7 C §* is said to satisfy condition (B) if

(1) T is closed under nonnegative linear combinations,i.e. if u; € T then
> ;aiu; € T for all a; > 0.
(2) T contains all smooth nonnegative functions of compact support.

We note that all of the subspaces just mentioned as well as many others (with
the exception of probability measures) satisfy condition (B). The spaces of prob-
ability measures are only closed under convex combinations, and we shall consider
separately.

For a subspace 7 C S*, we are interested in when a property P is generic for
G-convolutions of (distributions in) T. In analogy with Definition 5.5, this shall
mean that for any compact subset C' C R™ x A there is an open dense subset W of
u € T such that for all u € W, u * G possesses property P at each point of C.

Theorem 6.3. Suppose G is a scale-based kernel satisfying condition (A); and
that T C 8* is a subspace satisfying condition (B). If P is a transversally defined
scale-based property, then it is generic for G—convolutions of distributions in T .

Furthermore, for a compact subset C' on which ux G ezhibits P generically, the
local generic structure of W(ux Q) is given on C as in Theorem 5.10 by {W,.(2)};
and W(u x G) is structurally stable on C for sufficiently small perturbations of
ueT.

Given Theorem 6.3, with the same notation as above, we deduce the following
corollary for all reasonable subspaces of (uniformly) tempered distributions.

Theorem 6.4. All of the following subspaces of distributions satisfy condition (B).
Hence, for any scale-based kernel G satisfying condition (A), any transversally
defined scale—based property P is exhibited generically and stably for G—convolutions
on compact subsets of scale space.

(1) LP functions and L}-functions for 1 < p < oo and (see Ezample 2.1),
functions in Sobolev spaces HP, 1 < p < oo;
(2) positive regular Borel measures of moderate growth BM,, signed regular
Borel measures of moderate growth SBMy (again see Example 2.1);
(3) functions in (1) with compact support;
(4) C* functions with compact support, for fized k, 0 < k < oo;
(5) positive and signed regular Borel measures of compact support BM, and
SBM,;
(6) distibutions with compact support.
Note: for spaces of measures, we include smooth functions with compact support
f as measures fdr. The only spaces we have not included are the probability
measures. These are taken care of by the following.
Corollary 6.5. Suppose the scale-based kernel G satisfies condition (A) and P is
a transversally defined scale—based property via the closed Whitney stratified subset
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W. If W is invariant under multiplication by scalars (z € W implies cz € W for
any ¢ € Ry ), then G-convolutions on the spaces of probability measures PM, or
probability measures with compact supports PM., also exhibit P generically (and
stably) on compact subsets of scale space.

To prove Theorem 6.3, we again want to use the relative transversality theorem.
We give a proposition which exhibits a subspace needed for applying the relative
transversality theorem to the convolution map restricted to 7.

Proposition 6.6. Let G be a scale—based kernel. Suppose there is a finite dimen-
sional subspace V' of smooth functions of (uniformly) moderate growth which satisfy
condition (A) for G. Then, there is a finite dimensional subspace V consisting of

)

(20,70 sending

smooth non—negative functions of compact support such thatV — H

u = 79 (u x G) (o, No) is surjective.

Proof of Theorem 6.3. The proof of this Theorem follows the lines of that for The-
orem 5.8. Since G satisfies condition (A), Proposition 6.6 provides the linear sub-
space V spanned by a finite set of smooth nonnegative functions of compact support,
{¢i,i =1,...,m}, such that the map ¥V — HEQMO) sending u — jO (u x G) (20, \o)
is surjective. By openness of surjectivity, there is an open neighborhood U of
(2o, Xo) such that the corresponding map for (z',\') € U is surjective. Given
(21, A1), there is an element (7,,0) € PS so that (7;,0) - (29, o) = (21, A1). Then,
by Corollary 4.8, the subspace V; spanned by {(7,,0)*(¢;)} will also map sur-
jectively onto HE?I’ ) and hence also for (z',\") € Uy an open neighborhood of
(z1,A1). By assumption 2) of condition (B), Vi C 7. Thus, we conclude that
cA,c|T has smooth image, and we can directly apply the relative transversality
theorem for those 7 which are linear subspaces.

For the subspaces only closed under nonnegative linear combinations such as
positive Borel measures, we must note that the proof of the relative transversality
theorem still works if we find an open convex subspace V' of V which satisfies the
condition for smooth image in the relative transversality theorem except that the
given u belongs to the closure of V'. With this observation, we can apply the
relative transversality theorem to the remaining cases. O

Proof of Corollary 6.5. By Proposition 6.6, given (zo, Ao) € R™ x R¥ | there is a fi-
nite set of smooth nonnegative functions {¢;,¢ = 1,...,m} of (uniformly) moderate
growth such that j¢(¢; * G)(z0, Ag) span the linear space Hfzo, Xo)- The correspond-
ing measures ;dz define positive regular Borel measures of compact support. We
denote the linear subspace spanned by them by V. Given a probability measure
u € PM (respectively PM,), then V; = u+V C PM (respectively PM,). Let
Vo ={p' € V1 : [z ' =1}. Then, V, is an affine subspace of BM, (respectively
BM_.). Then, we let V' denote the subspace of Vs, consisting of measures of the
form ' = p+ Y a;pi;dx with a; > 0. Then, V' is an open convex subset of Vs with
@ in its closure.

Since the map V — ’wao)\o) sending p' — j¢(u' * G)(wo, \o) is surjective, the jet
map j¢(u' * G)(z, ) will continue to be surjective for (z, ) in a neighborhood U of
(w0, Ao)- Hence, the map Ry x V' xU — H* sending (c, ', (x, X)) = j¢(cp'*G)(z, \)
will be a submersion. Hence, it will be transverse to W (in H¢). As W is invariant
under scalar multiplication, the restriction to V' xU ~ {1}xV'xU will be transverse
to W. Hence, it follows that ca, g (respectively cg) is transverse to W in the sense
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of [D2, Def 1.4], so we can apply instead the absolute transversality theorem [D2,
Thm 1.5] (using #* in place of J¢(R™ x R% )) to conclude that the property P is
generic for G—convolutions of probability measures in PM or PMy. By the same
arguments used to prove Theorems 5.10, and 5.11, we deduce both the generic
local structure and stability for W (u* G) on any compact subset C' on which p*G
exhibits P generically. O

Proof of Proposition 6.6. We first fix a family of smooth nondecreasing “step func
tions” ¥ on R for which 0 < x. < 1, Xe(z) = 0 for z < 0, and x.(z) = 1 for
z > €. Then, we define xgr(z) =1 — X1 (|lz|| - R) for z € R". Again, 0 < xr <1,
xr(z) =1 for ||z|| < R, and xg(z) = 0 for ||z|| > R+ %. Then, we claim

Lemma 6.7. Let ¢ be a smooth function of (uniformly) moderate growth with
compact support in RE | then xrp — ¢ in §* = Sn.a (respectively Sy, ). Specifically,
for any neighborhood U of 0, there is an Ry > 0 so that xprp—y € U for all R > Ry.

By ¢ having compact support in R’i, we mean there is a compact subset K C R’i
such that supp (p) C R® x K.

Given the Lemma, we proceed with the proof as follows. We give the argument
for uniformly tempered distributions which specializes to the case of tempered dis-
tributions.

Let {¢1,...,9m} be a set of functions of uniformly moderate growth such that

{jz((pi * G)(xoa)‘O)ai =1,... 7m} span Hf\,G(zo,/\o)‘

First, we may assume that each ¢; has compact support in Ri. To see this, let
1¥(A) be a smooth bump function on ]R’jr with compact support K, such that ¥ =1
on a neighborhood of Ag. Then, as convolution is with respect to z, we easily check

W) i x G)(mo, M) = §(pi * G) (20, M)
Thus, we can replace each ¢; by 9 - ¢;, so we may as well assume each ¢; has
compact suport in RE .
Then, define ® € hom(Rm,Hﬁig(wo’Ao)) by

(6.1) D(ug, .y Um) = Zuijl(c,\,g(goi))(wo,)\o)

(3

and an analogous linear transformation ®g using instead xgrp; in place of ;.

(6.2) Op(ut,. .. um) = > uij’(ca, a(xrei)) (o, No)

K3
Then, by the continuity of cs, ¢ and Lemma 6.7, ca, ¢ (Xry:) approaches ca, g ()
as R — 0o. We conclude that & — ® in hom(]Rm,’Hf;’G(wo’/\o)) as R — 00. Since
d is surjective, there is an Ry so that ® g is surjective for R > Ry. If the xgyp; were
nonnegative , then they would be our desired functions. Lastly, we alter them to
attain this property as well.

Let C;r = MaX| | <R+ 4 lpil, and let a; g > C; r denote a number to be chosen.
Then, ¢} p = xr(@; + a; r) is smooth, nonnegative, and has compact support. We
claim that for each R > Ry, there are a; g so that {j%(ca,c(¢}R))(%0,X0)} span
Hﬁ,G(zo,ko) as required. In fact,

3 (ea, a (@ r))(@0s Mo) = § (en, c(XRY:)) (0, Ao) + ai RIR
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where gr = j“(ca,¢(XR))(20,d0). For fixed R > Ro, {j*(ca,c(Xrp:)) (%0, Ao)}
span Hﬁ, G (z0,2o) ienCe, there is a nonempty Zariski open subset of (a1 Ry---yamR)

such that {5°(ca,c(¢}r)) (@0, M0)} span H{ g, 1)+ Thus, for each such R we
choose (a1 R,---,ampr) from this Zariski open subset and satisfying a;g > Cigr

yielding the desired set of smooth non—negative functions with compact support.
a

Finally we prove Lemma 6.7.

Proof of Lemma 6.7. Suppose ¢ has uniformly moderate growth. Integration h —
J ¢(z, A)h(z, \)dz defines a uniformly tempered distribution u,. Given a neighbor-
hood U(M, B(b),€) of 0, we will find a constant Ry, an integer M, and a constant
¢ < €/bp such that for R > Ry,

(6.3) lxe = 1) up.(W)lle - < ¢ pmra(h)

This will imply (xg — 1) - ¢ € U(M, B(b),¢) for R > Ry as required.
Given |a| < M, we may expand

D5 [ (xate) = Dl Ni(a, Nda| =

(6.4) [ 22 eav(xn(@) = )DRp(x, A) - DYh(z, \)da|
R™ Bpy=a
for positive constants cg, which are independent of ¢ and h. Let ¢ have compact

support K C Ri. By the uniformly moderate growth of ¢, there are positive Cg
and mg such that

(6.5) IDPyp| < Cg(l+||z[[)™ forallz € R and A € K
Thus, (6.5) holds on R* x R¥ . Hence,

©6) 15 [ (cn=Dp-hasl < 3 ey [ O+ el - DIl

Bty=ea
Let M; = max{M, max|g<p{mp}}. Then, for A € Kpr,1n
1
2ymg .| DY - - .
Let M' = M; + n and define
(6.8) O = max{ > ¢ Cp}
Bty=a
and
(6.9) e(R) = / 1
' Jel>r (14 [lz(]?)"

Then, by taking the supremum of (6.4) over || < M and A € K, and applying
(6.5) through (6.9), we obtain

(6.10) l(xe —1)-up. (M)l < Cum -e(R) pamra(h)

Since e(R) — 0 as R — oo, we may choose Ry so that Cpp - £(R) < €/byy for
R > R,. Then, (6.10) yields (6.3). O
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In §9 we shall give sufficient conditions that the Gaussian kernel and various
kernels derived from it satisfy condition (A), so that for these kernels the subspaces
we have mentioned do satisfy the conclusions of the theorems.

7. DISCRETE FUNCTIONS AND MEASURES

In what follows, we will repeatedly apply Theorem 6.3. Hence, we will frequently
make the following “basic scale space assumption”.

7.1 (Basic Scale Space Assumption). We assume G is a scale-based kernel satisfying
property (A) and that P is a transversally defined scale-based geometric property
defined via the closed Whitney stratified subset W, with strata {W;}.

Next, we consider the class of discrete functions or measures, which form a quite
specialized class of functions and measures. Because of their special form there is no
reason to expect them to exhibit a property P generically on any compact subset of
scale space. Nevertheless, we ask whether: i) any, ii) “many”, or iii) “most”discrete
functions or measures can exhibit the property P generically on compact subsets
of scale space?

A discrete set of data can define a discrete function or discrete measure in several
different ways. Usually, for functions this is done by defining for points of a fixed
grid the function values. We take a slightly different approach because we want to
obtain functions (and measures) defined on all of R". For this we consider a mesh
B which consists of a locally finite decomposition of R™ by regions whose closures
are compact with piecewise smooth boundaries, and whose closures only intersect
on their boundaries. We refer to the regions as cells. We remark at this early point
that use the term “mesh”rather than “grid”to emphasize that we are considering
functions taking constant values (or piecewise linear values) on the cells rather than
just at the points of the grid.

We further suppose we are given a method for refining the mesh by a finer mesh
of smaller subregions with the same properties and whose diameters on any compact
set can be made arbitrarily small after a finite number of subdivisions. We let ||B||
denote the maximum diameter of all cells, which we assume is finite.

Example 7.2. A mesh is defined by a grid of cubes defined for a = (ay, ..., a,),
with a; € Z, by

aj aj +1
Im(a)z{gcz(ml,...,mn)eR":2—:n§a:j< ]2m }  for fixed m.

See figure 4. Refinements are by subdivision of the cubes, with m inceasing. Al-
ternately, we can consider a triangulation by simplices, etc where the refinement is
by barycentric subdivision.

Then, for us a discrete function will be one which is constant on each region of
the grid (ultimately, we do not care which values are taken on the various boundary
segments), and is zero except on finitely many cells of the mesh. By a piecewise
linear function, we mean one which is piecewise linear on the closure of each cell
and zero except on finitely many cells.

Given a finite set of data points D = {z;,i = 1,...,m}, we can associate positive
Borel measures in two different ways. One is the associated counting measure.
Given a Borel set U we let u(U) = card{z; : z; € U}. Alternately, if we also have
a mesh, we can define a “box counting measure”. We let ¢; = card{z; : z; € B;}
for each B; in the mesh; and define u(U) = >_; ¢;m(U N B;), where m denotes
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FIGURE 4. One choice of cells for a square mesh for R?

ordinary Lebesgue measure (see figure 5). By a discrete simple measure we shall
mean a measure obtained by multiplying a box—counting measure by a constant c.
Hence, in particular, we can obtain discrete simple probability measures.

°® ro.: ‘..
oo | .

FIGURE 5. Discrete data set on a square mesh for R? defines a
discrete measure

Remark 7.3. For a fixed data set D, we let ug denote the counting measure and
let u, denote the box—counting measure obtained using the n—th subdivision of B.
Then, it is fairly straightforward to see that u,, — uo as n — oo weakly as tempered
distributions (in the sense that [ hu, — [ huo for all h € S,,). In what follows, we
concentrate on the discrete simple measures obtained from box—counting measures.

We consider discrete functions, piecewise linear functions, or discrete simple
measures, and ask whether they can exhibit generic geometric properties in scale
space. Despite their crude structure, not only do there exist discrete functions
and measures which exhibit a property P generically on a given compact subset of
scale space, but we next show the set of such discrete functions and measures is
dense. First, we see as an almost immediate consequence of Theorem 6.4, that we
can approximate functions by discrete or piecewise linear functions exhibiting the
property P generically.

Corollary 7.4 (Density of Generic Discrete and Piecewise Linear Approximations).
With the basic scale space assumption, let C' be a compact subset of scale space.
Given fo € LP(R") (1 < p < o0), € > 0 and a mesh, there ezists both a discrete
function f1 and a piecewise linear function fo (relative to a refinement of the mesh)
which exhibit P generically on C and which approzimate fy to within € in LP(R™).
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Proof. The proof follows the lines of a more restrictive result given in [D5, Thm 3.1].
First, by Theorem 6.4, we may approximate fo by an f € LP(R"™) which exhibits
P generically on C and is within /2 in the LP—norm. As f exhibits P generically
on C, again by 6.4 there is an ¢’ > 0, which we may also choose less than /2, such
that if f' € LP(R") is within &’ of f then f' also exhibits P generically on C.
Then, by e.g. [Rul, Thm. 3.14],the continuous functions with compact support
are dense in LP(R") for 1 < p < co. Thus, we may first approximate f to within
52—’ in LP(R™) by a continuous function f’ with compact support B. Then, B is
contained in a compact region (2 consisting of the closure of finite many cells from
the mesh. Then, using the uniform continuity of f’, by further subdividing 2 we
may approximate f' to within 52—1 in LP(R™) by either a discrete function f; or a
piecewise linear function fy both with support in Q. These f; and fy are within
¢’ of f and hence both exhibit P generically on C. In addition, they are within

£ +¢' <eof fo, establishing the result. O

Thus, given any compact subset of scale space, the discrete and piecewise linear
functions exhibiting P generically on C is dense in any LP(R") for 1 < p < co. We
next prove an analogous result for Borel measures.

Corollary 7.5 (Density of Generic Discrete Measures). With the basic scale space
assumption, suppose we are given a compact subset C' of scale—space, € > 0, and a
mesh.

1) If p be a positive bounded regular Borel measure on R™ which is absolutely
continuous with respect to Lebesque measure, then there exists a discrete simple
measure v of compact support ( relative to o refinement of the mesh) which exhibits
P generically on C, and which approzimates p to within € in the space of positive
regular Borel measures.

2) Moreover, if the Whitney stratified set W defining P is invariant under mul-
tiplication by positive scalars, then we may also approxrimate any Borel regular
probability measure p , absolutely continuous with respect to Lebegue measure, by a
discrete simple probability measure p which exhibits P generically on C.

Proof. By the Radon—Nikodym theorem, we may write u = fodm, where f, €
LY(R") and dm denotes Lebesgue measure. Then, as yu is positive, we may arrange
that fo > 0. By the preceding Corollary 7.4, We may approximate fo to within £ by
a discrete function f; relative to a refinement of the mesh. Also, in using Theorem
6.4 in the proof of Corollary 7.4, we can arrange by the proof of Theorem 6.4 that
f1 > 0. Moreover, in the proof of Corollary 7.4 we may take f; to have nonnegative
rational values. Thus, on any cell f; = % for ¢;, M € Z and nonnegative, and M
independent of the cell. Then, fidm = % fadm where f5 takes nonnegative integer
values ¢; on the cells. Finally, if we pick a data set consisting of ¢; points in the i—th
cell of this refinement, then fidm = % f2dm is a discrete simple measure which
approximates p to within € and exhibits P generically on C.

If u is a probability measure, then we first replace € by €; = §. Then, there
exists a discrete simple measure fidm = % fadm which exhibits P generically
on C' and approximates p to within ;. Let ¢ = f fidm. Then, v = % frdm =

CLM f2dm is a box-counting probability measure. By the invariance of W under
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scalar multiplication, v exhibits P generically on C. Third, it satisfies
1 1
Il fo — EleLl <Ilfo— filler + 11— E| [l fulle

1
(7.1) <51+|1—E|-c < 2 =c¢
Thus, v is the desired approximation. O

Third, we ask whether “most”discrete functions or measures exhibit P generi-
cally on a given compact subset of scale space C. For a given mesh together with
all of its refinements, we can give one form of answer to this question.

Consider any discrete or piecewise linear function fy defined on a compact region
Q, which is a finite union of cells from the mesh. Also, we suppose that such fq take
(possibly a discrete set of) values in a finite interval [—a, a]. Then, we show that
given € > 0, by making a single refinement of the mesh and a single enlargement of
the region 2, we may any approximate fo to within ¢ by a discrete (resp. piecewise
linear) function exhibiting the property P generically on C.

Theorem 7.6 (Genericity for Discrete and Piecewise Linear Functions). With the
basic scale space assumption, let C' be a compact subset in scale space, and let € > 0.
Given a region Q contained in o compact subset D (and range of values [—a,a]),
then there is: a refinement B' of the mesh, an enlarged region Q' consisting of
the closure of a union of finitely many cells of B', and a refined set of function
values (if finite) such that: every discrete (resp. piecewise linear) function f on
Q (extended to be zero outside 1) can be approximated by another discrete (resp.
piecewise linear) function fi on Q' which exhibits the property P generically on C.
The approximation is within € in the LP-norm (1 < p < oo ) and within & in the
(essential) sup—norm on D.

Proof. We use condition (A) for G to adapt to our general situation the argument
given for a special case in [D5, Thm. 2]. We give the argument for discrete functions
with that for piecewise functions virtually identical

First, we can find a finite number of discrete functions {f;} on € such that any
discrete function on € (with values in the range [—a, a]) can be approximated to
within § by some f;. Hence, if we can approximate each f; by a g; on a larger
region €); to within § then this approximation also works on the larger Q' = UQ;,
so we can approximate any discrete f to within & on Q. Hence, it is enough to
approximate a single discrete fo. We extend this function to be zero outside 2.

The genericity of the property P is defined by transversality to a closed Whitney
stratified set W C H!. Let F = fo * G. By Proposition 6.6 and the proof of The-
orem 6.4, there is a finite dimensional subspace V spanned by smooth nonnegative
functions of compact support {1,...,¢x} such that the map fo +V — 'Hme o)
defined by f +— j¢(f * G)(z0, o) is a submersion for all (g, \g) € C. Then, by the
parametrized transversality theorem, there is a subset S C V whose complement
has measure zero such that j¢(F + f x G) is transverse to W on C for all f € S. As
the basis for V has compact support, there is an Ry so that supp(f) C Bg,(0) for
all f € V. By enlarging Ry we can assume B C Bpg,(0). We may choose a compact
neighborhood N of 0 in V such that if f € N, then |f| < £ on Bg,(0).

We pick f' € SNN so j¢(F+ f' «G) is transverse to W on C. Thus, by Theorem
6.4, there is an &' > 0 so that if go is L? close to fo + f' then go * G exhibits P
generically on C.
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Second, we cover B, (0) by a finite region ()} which is a union of closures of cells
of the mesh. Then, by refining the mesh, we may construct a discrete approximation
g1 to go on Qf that is within &1 in both the (essential) sup—norm and LP(£),)—norm.
Then, fi = fo + ¢1 is a discrete function on Qf which approximates fo to within &
on Br(0)

E €
(7.2) |f1—f0|=|91|S|go—g1|+|go|<§+§

and approximates fo + f' to within &’ in the LP(R")-norm

:(—:;

lf1 = (fo + 90)llz> = llgr — gollLrrm)
(7.3) <Ilgr — gollzroy < €'
Hence, f1 * G exhibits property P generically on C. |

Finally, as a complement to Theorem 7.6, we see that Corollary 7.4 does provide a
sup—norm estimate for the retention of a generic property under small perturbations
of a discrete function.

Corollary 7.7. With the basic scale space assumption, suppose the discrete func-
tion fo defined on Q exhibits property P generically on a compact subset C in scale
space. Then there is an € > 0 so that any other discrete function on Q (allowing
further subdivision) which is within € of fo in the (essential) sup—norm exhibits P
generically on C.

Proof. This is an immediate consequence of Theorem 6.4, which provides an &’ so
that if g is within &’ of fy in the L?(R"™)-norm, then g exhibits P generically on
C. However, for any discrete function g, if fo — g has sufficiently small (essential)
sup—norm ¢ on the compact 2, then g is €’ close to fo in the LP(R"™)—norm. Hence,
the result follows. |

Refinements of Discrete Simple Measures. The method of proof immediately trans-
lates over to the case of discrete simple measures. We define the notion of a re-
finement of a discrete simple measure. Given a box—counting measure p defined
from a data set D = {z1,...,Z,} and a mesh B, we consider the discrete simple
measure cu. We suppose that each cell of B has the same volume, and for each
refinement B’ of B, there is an integer g so that each cell is decomposed into q cells
each of % the volume. Then, after k refinements there will be ¢* cells from each
cell, each of X -th the volume. We replace D by a data set consisting of m - ¢* data
points such that if D has ¢; points in cell I;, then ¢; points are placed into each
cell of the refinement of I;, so we obtain a box—counting measure p' but we will
multiply by the constant -%. Thus, we refer to ;Cg ' as a refinement of the simple
discrete measure cp. Then, for any set formed from a union of original cells of B,
both measures give the same value.

If ¢'v is a discrete simple measure based on the k-th refinement B’ of B, then we
can compare ¢'v and cu by

1
llew —c'vllssm = & D le-cj—c ¢l

summed over all cells of B'.
Then, we claim we can also uniformly approximate discrete simple measures
by others which exhibit P generically on C. Consider a region ) contained in a
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compact subset D, and formed from cells of a mesh B. We consider discrete simple
measures p with support in Q and values v(I;) € [0, a] for all cells I; in B.
Theorem 7.8 (Genericity for Discrete Simple Measures). With the basic scale space
assumption, let C' be a compact subset in scale space, and let € > 0. Then, there
is: a refinement B' of the mesh, an enlarged region Q' (consisting of the closure of
a union of finitely many cells of B'), such that: every discrete simple measure
defined as above can be approximated by another discrete simple measure v defined
using B', with support in Q', and which exhibits the property P generically on C.
The approzimation is within € using || - ||sm such that

max|c-c; —c' -cj| <e onD
J

Proof. A discrete simple measure p = fy - dm, where dm is Lebesgue measure and
fo is a discrete function with value c¢ - ¢; on the cell I;. Hence, we can apply the
proof of Theorem 7.6, modifying it as in the proof of Corollary 7.5 to obtain an
approximation f; which is nonnegative and with rational values so that f; - dm is
the desired discrete simple measure. O

Remark 7.9. We ask in Theorems 7.6 and 7.8, how much larger than Q does €'
have to be?

We know by Proposition 6.6 there are smooth nonnegative functions {1, ..., om}
with support in Bg(0) (for some R > 0), such that {j*(¢; - *G)(z0, \o)}, for i =
1,...,m span HE (0,ho) FOT (20, A0) = (0,1), where 1 € RE denotes (1,1,...,1),
let R, denote the infimum of such R. We can express ' in terms of Q and R,,.

For any compact subset C; C R™, there is a finite dimension subspace V spanned
by smooth nonnegative functions with support in C; + Bg(0) such that the map
vV = Hfz,l) sending f — j%(f * G)(x,1) is a submersion for all z € C;. Then,
for any scale threshold S = [][e;, L;], we can apply the scaling action to obtain
functions with support in Co = UxesA - (C1 + Bg(0)). This is an allowable Q' for
Q=0Ch.
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Part 3. Classical, Scale-based, and Multi-feature Geometries

In Parts 1 and 2, we established theorems which guarantee the genericity and
stability of scale-based generic properties P defined by transversality to closed
Whitney stratified subset W of ’Hé, where G is a scale-based kernel satisfying con-
dition (A). These properties were shown to furthermore hold for certain subspaces
of tempered distributions 7 which satisfy condition (B), as well as for generic dis-
crete or piecewise linear functions and discrete measures. To apply these results, we
must identify both interesting classes of scale-based kernels which satisfy condition
(A), and scale-based properties P.

In Part 3, we provide answers to these questions. At the same time, we expand
the original goals of Parts 1 and 2. We provide sufficient conditions that associated
discrimination functions, measures, or distributions which determine the amount
of a discriminated property in a given region also exhibit generic scale-based prop-
erties. We do this for both single and multi-feature discrimination functions and
measures.

In §8, we determine when a “classical geometric property”has a scale-based
version, and whether this scale—based version has identical properties to those for
the classical case. We identify two distinct methods for doing this. One case with
scale—parameters treated as distinguished parameters will be treated in §14.

We introduce in §9 a large class of “extended Gaussian kernels” which expand the
class of Gaussian kernels by allowing anisotropy, derivatives, and multiple scaling
parameters. We establish in Proposition 9.4 that such kernels satisfy condition (A).
At the same time, we obtain sufficient conditions (Corollaries 9.6, 9.7, and 9.9) for
explicitly verifying the conditions from §8 that a geometric property will have a
scale-based version with the same generic properties.

In §10, we consider associated discrimination functions, measures, and distribu-
tions. The space of such distributions which arise by applying a filter, a differential
operator, or a statistical construction yielding a measure will typically form a proper
subspace of tempered distributions. For an operator ¥, we provide sufficient con-
ditions that the image subspace is sufficiently robust so that such discrimination
distributions will exhibit scale-based geometric properties with the same generic
properties as all generic distributions. As the discrimination process usually in-
volves a specific scale, genericity results can only be expected for regions that are
at a sufficiently larger scale; and hence we restrict to a specific compact region C'
of scale space. We give sufficient conditions that the discrimination distributions
have generic geometric structures on C for a dense open subset of the space of
initial distributions (Proposition 10.2). In the case of a linear operation W, this is
concretely expressed (in Theorem 10.5) in terms of the scale-based kernel satisfy-
ing condition (A), and ¥ satisfying a condition (B¢) (as a substitute for condition
(B) for subspaces considered in Part 2). We deduce sufficient conditions in three
situations: partial differential operators (Corollary 10.6), a linear operation which
can approximate “block functions” (Corollary 10.7), and a simple form of texture
discrimination (Corollary 10.9).

In §11 we turn our attention to scale—based properties of vector-valued tempered
distributions with values in RP, which are given by p-tuples of (uniformly) tempered
distributions. We allow different scale-based kernels and scaling actions for each
component, so the action of the Poincaré scaling group PS does not act via a
single geometric action on R x ]R’jr, but rather componentwise. Nonetheless, we
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show that the convolution jet space has analogous properties to those for single
distributions. We deduce that scale-based geometric properties of vector—valued
tempered distributions satisfy analogues of the theorems for genericity and stability
from §85, 6, and 7.

Lastly, in §12 we combine the methods of §10 and §11 to analyze multi—feature
geometry. If we associate to an initial distribution, multiple distributions defined
using a number of different discrimination criteria, we obtain a vector-valued tem-
pered distribution. We give a criteria in terms of “generic independence of discrim-
ination features”for genericity of multi—feature geometry for an open dense set of
initial distributions (Proposition 12.2). In particular, we deduce that scale-based
geometric properties of these vector-valued distributions will interact generically on
C'. Using this, we give a sufficient condition, in terms of independence conditions
of “mask functions”that a simple form of multi-texture discrimination will have
generic scale-based geometric properties (Corollary12.5).

8. SCALE-BASED PROPERTIES DERIVED FROM CLASSICAL GEOMETRIC
PROPERTIES

Suppose we are given a scale-based kernel G which satisfies condition (A). Many
of the geometric properties we considered in §1 are “classical geometric proper-
ties” defined for smooth (or at least highly differentiable) functions. We describe
how we can define associated scale—based properties and to what extent they have
the same generic properties as the original classical properties.

Suppose then that the property P’ is a geometric property defined for smooth
functions and given by algebraic equalities and inequalities involving the partial
derivatives of the functions. These algebraic conditions define a semialgebraic sub-
set whose closure W' C J¢(R™,R) again is a semialgebraic subset. By a theorem
of Lojasiewicz [Lo], W' has a Whitney stratification whose strata are again semi-
algebraic subsets. Thus, the property P’ is defined by transversality to the closed
Whitney stratified subset W' C J¢(R"?,R), which we henceforth suppose is a closed
semialgebraic subset with semialgebraic strata. The individual strata define the
various ways that the property P’ can be exhibited.

We identify two approaches for defining an associated scale-based property P.

(1) First, if P’ is defined for smooth functions on R” x R¥, then we can define
a corresponding property for convolved functions on scale space R x Ri,
without regarding the scale parameters A as distinguished. This describes
how geometric properties propagate throughout physical-scale space.

(2) Second, if instead P’ is defined for smooth functions on R™, then we can
retain the distinguish role of A\, We define a scale-based property for con-
volved functions on scale space, viewed as unfoldings with the scale param-
eters A as unfolding parameters. This allows us to consider how geometric
properties of physical space change as scale parameters vary.

In both cases, we ask how exactly the scale-based properties can be determined and
how they relate to the original properties P’.

The second case is actually much more subtle mathematically than the first for
we are viewing the convolved function f = u * G as an unfolding on the scale pa-
rameters A\. Then, we first must determine whether for fixed parameter values, f
stably exhibits the property P’. The generic behavior which then occurs typically
corresponds to generic properties of a version of P where the A are not treated
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as distinguished parameters. However, there will also be parameters values where
§E(f) fails to be transverse to W'. Hence, we must also determine how transversal-
ity can generically fail in families producing generic transitions. This requires us
to consider an equivalence capturing failure of transversality and using the basic
theorems of singularity theory as they apply for this equivalence. We postpone
considering this case until Part 4, where we more generally allow parameters in
the families of distributions, as scaling parameters, and/or as external parameters
appearing in the kernel.

Returning to the first case, we provide an answer in terms of the transversality
behavior of the stratified set W' relative to ’Hé. We first define an associated closed
Whitney stratified set in H%. Let

W€ wnus.
with W' C JYR" x R¥ ,R). Then, by Proposition 4.9, HY is a semialgebraic
submanifold of J¢(R" x R ,R). Hence, W, being the intersection of semialgebraic
subsets, is again a semialgebraic and is closed in H& as W' is closed. We may again
apply the theorem of Lojasiewicz [Lo], and conclude that W again has a Whitney
stratification with semialgebraic strata.

Proposition 8.1. In the preceding situation, suppose W' is transverse to Hé,
i.e. the strata {W/} are transverse. Then, for convolutions u x G, the scale—based
geometric structure defined by transversality to W in Hf; has identical generic prop-
erties as those exhibited by smooth functions on R™ x RF which generically exhibit
P

If W' is not transverse to HE, then W is still a closed Whitney stratified set
and still yields a transversally defined property P exhibited generically and stably
on compact subsets of scale space. However, the geometric properties and structure
associated to P will differ from that for P'; although they are determined by the
local structure of W.

Proof. Let f = uxG. In the case W' is transverse to Hg,, we have the diagram 8.1
which is a fiber square.

]Z(f) l 7 Y] k
R x RE > HE » JHR™ x RE | R)
(8.1) T T T
QI y W —— W'

Hence, j*(f) is transverse to W relative to H iff j*(f), viewed as a mapping to
JER™ x RE | R), is transverse to W'. Then, j¢(f)~'(W) = j(f)~'(W'). Hence
the geometric structures agree and the geometric properties possessed by u * G are
those possessed by maps generically exhibiting P’.

In the case W' is not transverse to H&, then we can no longer assure a relation
between transversality of j¢(f) to W in % and transversality to W’. However, for
convolutions f = u*G, we do still obtain that transversality of j¢(f) to W defines a
modified version P of the property P'. Property P will be exhibited generically on
any compact subset C of scale subspace with associated geometric structure given
by W(f) = j*(f)~*(W). By Theorems 5.8, 5.10, and 5.11 we obtain the genericity,
local structure, and stability for a corresponding property P defined by W. |
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We briefly indicate to what extent the preceding proposition has been or can be
applied to the classical geometric properties identified in §1: 1) generic differential
geometry, 2) edge—based geometry, 3) level set geometry, and 4) medial geometry.
The principal application has been for medial geometry; however, we also indicate
the relevance of Proposition 8.1 for application of the other geometric properties.
To consider them we must have them defined for R* x R*. For example, functions
obtained by convolving distributions on R? with a kernel with a single scale param-
eter such as a simple Gaussian, medial or edge kernel as in Example 4.2, will be
defined on 2 + 1-dimensional scale space.

Example 8.2 (Generic Differential Geometry of Surfaces). As indicated in §1,
there has been considerable work on the generic structure of ridges, crests, parabolic
curves on surfaces and their relation with the geometry of surfaces. Their generic
properties are given by semialgebraic conditions which describe when certain as-
sociated geometrically defined functions exhibit specific singularities. Hence, there
is a closed Whitney stratified set which transversally defines the generic properties
for these sets. As of now, the relation with scale has not been explicitly inves-
tigated. For a surface associated to a convolved function, such as a level surface
(see Example 8.3) or surface of extremal slope (see Example 8.4), the corresponding
curves will have generic properties given by transversality to a corresponding closed
Whitney stratified set.

Example 8.3 (Generic Edge-Based Geometry). The generic edge—based geometry
of a function on R? based on the Canny edge has been determined by Rieger [Ril].
For higher dimensions, he has determined some of the generic edge—based properties
in [Ri4]. The conditions are given by specific algebraic conditions on derivatives.
Hence, there is a closed Whitney stratified set describing the generic properties. It
has not been yet determined how this behaves relative to any convolution jet space
(but see §14).

Example 8.4 (Generic Level Set Geometry). Geometric properties for level sets of
functions on R?. have been identified by [Gau] and the generic properties are given
in [Ri3]. They have not been fully determined for functions on higher dimensional
spaces, although the results of [BGT] apply off the critical set. The associated
generic medial geometry for the collection of level sets can be described through
generic properties of an associated “shape map”[D2, §6]. Also, Zakalyukin and
Goryunov have obtained generic transitions of medial axis for level surfaces in
[GZ]. The behavior relative to scale space has not yet been determined.

The strongest results for convolved functions on scale space have been obtained
for medial geometry using relative critical sets. As mentioned in §1, medial prop-
erties of convolved functions can be partially understood via “height ridges”of the
associated medial function (i.e. cores). The generic properties of these are under-
stood as part of the full relative critical set.

Example 8.5 (Medial Geometry via Relative Critical Sets). One approach to the
medial geometry of functions is via the relative critical set [D4], Miller [Mi], and
Keller [Ke]. Suppose f : U — R is smooth with U an open subset of R”. At
a point z € R*, we let A\; < A2 < --- < A, denote the eigenvalues of H(f)(z),
the Hessian of f at . Let {e1,...,e,} denote associated unit eigenvalues. If
the A; are distinct then for a subset I C {1,...,n}, we let Cr(f) denote the set
of points z where V f(z) is orthogonal to e; iff ¢ € I. In [D4] and [Mi] were



50 JAMES DAMON

constructed closed Whitney stratified subsets T of jet space with the property that
if j¢(f) is transverse to I' then the {Cr(f)} are smooth strata forming a normal
crossings divisor off the partial umbilic set where the \; are not all distinct. This
divisor is further stratified by the “singular Hessian hypersurface” which generically
intersects the strata transversally. Moreover, at least in dimensions < 4, this can be
fully extended in an appropriate fashion to the partial umbilic set, so we still have a
normal crossings divisor. Certain smooth strata of this divisor form the height ridge
set introduced by Pizer-Eberly [PE]. In addition there are strata corresponding to
“valleys”, as well as certain connecting strata which join and intersect ridges and
valleys in precisely specified ways (see also [D7]).

In dimensions > 4, the explicit geometric structure needed to fully determine
the relative critical sets on the partial umbilic points has not yet been fully worked
out. However, there is partial information given by Miller[Mi] who has determined
in terms of the codimension of the strata of the space of symmetric matrices, in
which dimensions various partial umbilic behavior will generically first appear.

For the purpose of establishing the stability and genericity without regard to
dimension, there is an alternate abstract construction of the closed semi-algebraic
Whitney stratified set in dimensions > 4 which is valid for all points, although it
does not yield the specific structure on partial umbilic points (see [D7]). Thus, we
may apply Theorem 6.4 and Proposition 8.1 to conclude that for a given scale-based
kernel G, there is an associated generic relative critical set structure for G—convolved
functions. Although we do not know for specific G whether, the generic structure
is identical to that for generic smooth functions.

Corollary 8.6. Given any scale-based kernel G satisfying condition (A) and sub-
space of tempered distributions T satisfying condition (B), there is an associated
generic relative critical set structure which is exhibited generically and stably for
G-convolved distributions from T on any compact subset of scale space.

What has to be determined in applying Proposition 8.1 is whether the relative
critical set structure for convolved functions has the same generic properties as
those for generic smooth functions.

Example 8.7. We consider the case of the “Mexican hat”medial kernel M given
in Example 4.4. Convolution with the medial kernel M associates to tempered
distributions “medial functions on scale space”. In [D4] and [Mi], it is proven that
in dimensions n = 2,3 (i.e. 2+ 1 and 3 + 1 scale-space), I' defined in Example 8.5
is transverse to H¢, (see also §9). Hence, on compact subsets of scale space, these
medial functions have relative critical sets exhibiting the same generic properties as
smooth functions. In particular, we deduce the explicit generic properties of height
ridges of the medial functions (called “cores”by Eberly- Pizer et al. [PE]). For 2
and 3-dimensional grayscale images, the generic properties are given in [D3], [D4],
and [Mi], see also [Fu].

9. EXTENDED (GAUSSIAN SCALE-BASED PROPERTIES

We described in §8 two methods for defining scale-based geometric properties
from classical ones, one of which does not treat A as distinguished parameter(s).
In this case, Proposition 8.1 provides a method for applying the results from Parts
1 and 2 to obtain genericity and stability. We must: i) identify kernels G which
satisfy condition (A), and ii) give specific methods for identifying H, or ’Hf;’ a» to
determine when a closed Whitney stratified set W defining a classical geometric
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property P will be transverse to HE or Hf&, - In this section, we give answers to
these questions for a general class of “extended Gaussian kernels”. This is a natural
class of scale-based kernels defined from standard Gaussian kernels by allowing
anisotropy, multiple scaling parameters, and the application of certain differential
operators. We give a polynomial basis for Hé (zoxo) OF ’Hf;’ G (20:20)? and establish
that any such kernel satisfies condition (A) (Proposition 9.4). Second, using the
polynomial basis, we give sufficient conditions for transversality to #§ or Hf 4
(Proposition 9.8 and Corollary 9.9).

A Class of “Extended Gaussian Kernels”. We listed in Examples 4.2, 4.4, and
4.6 several types of kernels derived from Gaussian kernels. These include: i) the
standard and anisotropic Gaussian kernels; ii) the multi-Gaussian kernel defined
for the decomposition R™ = @I_; R™; and iii) associated kernels such as the medial
kernel M(z,t) and the edge- based kernels; and iv) pullbacks of these kernels by
homomorphisms.

These belong to a general class defined as follows. Let n = Y_;_; n; for positive

integers n;, and consider the decomposition R* = @7_,; R where z = (z(1,..., z(")
with 2@ = (27 2{)). We have an action of R", (with coordinates (07, ...,07}))

on R* where o/ acts trivially on z(/) for j # i and by scalar multiplication by o/
on 29 so its weight matrix has i-th row consisting of 0’s except for 1 in positions
corresponding to z(?.

Let Qi(0}, D@, Dyt) denote a linear differential operator with polynomial coef-
ficients in o}. We assign weights

0

!
0o

9 y=-1 foralli.

wt(o}) =1, wt(z;)=1, wt( .

)=-1, and wt(

We say that Q; is weighted homogeneous of weighted degree m if it has the form
Q — Z Caﬁi . 0_: Mapi | D;Df,,

where mqg; = m + f + |af, and cqp; are constants.

Definition 9.1. A kernel K is an extended Gaussian kernel if there are: i) a decom-
position of R” as above; ii) (regular or) anisotropic Gaussian kernels K (z(?,o!) =
K %agz(x(i)) for distinct scaling parameters ¢’ = (o1,...,0,); ili) weighted homoge-
neous differential operators Qi((0}, Dy, Do) of weighted degrees m;, i =1,...,7;
and iv) a homomorphism ¢’ = p'(c) : RE. — R". of the form (4.4) such that

K@o) = ¢ ([[QiEED o)

Such a kernel allows anisotropy, independent scales o;, measurement of distinct
geometric properties on the distinct subspaces R™ | as well as mixing of scales. We
note that by Lemma 4.3, as (anisotropic) Gaussian kernels are scale-invariant, such
an extended Gaussian kernel is scale-based with scale weight m = (my,...,m,;).
Hence, if we multiply the extended Gaussian kernel by the monomial ¢—™
[Io; ™, it becomes scale-invariant.

We next answer when such an extended Gaussian kernel satisfies condition (A),
and at the same time explicitly determine H,.
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Polynomial Basis for HE. First, for the standard Gaussian kernel G = K;(z), a
polynomial basis for H,, (o,t0) for arbitrary (zo,to) can be given using an explicit
weighted homogeneous basis for solutions to the heat equation see [Fo] or e.g.
[D1, §3]. We denote such a basis for the solutions at 0 of weighted degree m
by {p;(z,t)}. If we take the union over weights < 2/, then they span a subspace
which is mapped by the jet extension map at 0 onto the £-jet space at 0 of solutions
to the heat equation. The set of solutions to the heat equation are preserved under
translation. Hence, if we translate these polynomials to a point (xg,tp), obtaining
{pj(x — zg,t — ty)}, then they again map to a basis for the /-jet space at (zo, %)
of solutions to the heat equation. For a solution p(z,t) translated to (zg,to), we
substitute t = £0? (and to = 103) and expand about the point (zg,00) in terms
of local coordmates (z,6) = (z — 20,0 — 00) and obtain p(z, 000 + £62). Then,
applying this procedure to {p;(z,t)}, and mapping to the jet space at (zo,00), we
obtain a spanning set for Hf}( (20,00) (and weighted homogeneous solutions of weight
> 2¢ will map to 0). Hence, a subset will map to a basis.
Second, consider an anisotropic Gaussian kernel

1 — <z, Az >)
(4mt) s 4t

for a symmetric positive definite matrix A. Let A = A" for a symmetric positive
definite matrix A'. Then, for a tempered distribution u, u * K; is a solution to the
anisotropic heat equation

(9.1) Z—J; =Tr(A'H(f))  where H(f) is the Hessian of f.
This equation is weighted homogeneous for weights wt (z;) = 1, all 4, and wt (t) = 2.
Such solutions can be obtained from solutions f; to the usual heat equation via
f(z) = f1(A'z). Hence, we obtain a basis for solutions at 0 of weight m by using
the basis for the usual heat equation {p;(A'z,t)}. We can repeat the preceding
argument, taking the union over m < 2/, translating to an arbitrary point (zo,t0),
substituting ¢t = 102, and expanding about (zo,00) to obtain a basis for H

Third, c0n51der a multl Gaussian kernel

Ky(z) = 7~ (det(A))? exp(

K (z0,00)"

H K;(z?,0;) where K;(z?,0;) = Ki1,2 (=, t;)

where K;(z) is a (regular or anisotropic) Gaussian kernel. We observe that if

L; = =5 = A,; is the anisotropic heat operator in (z(?),#;) as given in (9.1), then
f=ux }( (z,0) is a solution to the heat equations

0
(9.2) Li(f) = 87{ A(f) =0 for i=1,...,r
Conversely, as the equations (9.2) involve independent coordinates, we claim that
HE ; has a weighted polynomial basis obtained as products of polynomial

K; z‘(z),o',-o
solut(ioons to)the separate heat equations. Specifically, the operators L; are weighted
homogeneous of weighted degree —2. Hence each preserves the weight decomposi-
tion on polynomials in (z,t). We let H(£) denote the subspace of polynomials of
weight £ which are solutions to the equations (9.2). It decomposes

(9.3) H(E) = @|k|:ﬂ'[(k)
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where k = (kq,...,k,) and H (k) denotes weighted homogeneous solutions to (9.2)
which are of weight k; in the variables (z(¥),¢;). The L; also preserve the decompo-
sition (9.3). If we let H;(k) denotes the subspace of polynomial solutions in (z(?, ;)
of weight k to the single heat equation L;(f) = 0, then we can decompose H (k).

Lemma 9.2. There is a decomposition

(9.4) H(k) =~ HHi(ki)
i=1
where the inverse isomorphism is given by (p1,...,pr) = [, pi-

Proof. The proof is by induction on r, with the case r = 1 trivially true. Let
f € H(k). First, f is a solution to L;(f) = 0 for ¢« = 1,...,7. We first may
represent such a weighted solution f of the first equation L1 (f) = 0 in the form

(95) f = zgj(l'(2),...,.’L'(T),tz,...,tr)pj(.’ll'(l),tl)
J

where the {p;} form a basis of solutions of weight k1. Then, the remaining operators
L; for 4 > 1 act on the coefficient functions g;. As f is also a solution to the
equations L;(f) = 0 for ¢ > 1, these L;, for ¢ > 1, must annihilate the g;. Hence,
by induction each g; has the required form; hence, so does f. |

Hence combining (9.3) and (9.4) of Lemma 9.2, we obtain for a multi-Gaussian
kernel K (z,0) a polynomial basis for H¢ (z0,00)" YOI @ given £, we let

(9.6) & = A{]]#9, 1)}
i=1

where in the collection of products, each p;'- varies over a polynomial basis for
®%_Hi(j) given above.

Proposition 9.3. For a multi-Gaussian kernel K (z,0), H% (z0,00) 'S spanned by

the £-jets obtained from the polynomials in o4 translated to (zo,t0) after substituting
t; = %O’? ((md tio = %01-20), 1= 1,...,7‘.

Proof. Let Ky(z) = [[; Kis;(z'?) denote the associated multi-Gaussian kernel, so
K (z,0) is obtained from K (z) by substituting t; = 10%,i =1,...,r. For f = uxK,
we let fi(z,t) = ux Ky. Then f; is a solution to L;(f) = 0for i = 1,...,r. If
we translate fi to (zo,t0) then fi(z —xo,t —to) is again a solution and conversely.
Then, if we decompose the Taylor expansion of f; into its weighted homogeneous
summands, the translations are the weighted homogeneous summands in terms of
(z,t) = (z — o, t — to). Then, we obtain f from f; by substituting ¢t; = 107 (and
tio = %01-20), i=1,...,r. We see that the terms of weight > 2¢ will map to zero in
’Hﬁ( (2 i) Hence, the products in &y, after translation and substitution, map
to a sﬁ)aflning set. O

We can now draw a conclusion about extended Gaussian kernels in the special
case that the homomorphism o’ = p'(s) : RE. — R% has matrix C = (c¢;;) with
entries nonnegative integers such that Ej cij > 1 for each i.
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Proposition 9.4. For any extended Gaussian kernel K(x,c) with homomorphism
p' with matriz C as above, there is a polynomial basis for H, (20,00) for any

(z0,00) € R* x R Hence, K satisfies condition (A).
Proof. The extended Gaussian kernel has the form K (z,0) = p'*(K(z,0"), where
(97) R(.CL',O'I) = HQi(0-27Dw(i)JDai)(Ki(x(i)7Uzl'))

If f=uxK,then f = ([[ Qi(uxK')) 5=y (o), where K' = [[; K;. Then, Q@ = [[ Qs
is a linear operator with polynomial coefficients of order, say M. As ux K' € Hg-,
we conclude that

(9.8) HE = QUM (M)
where
(9.9) QUM . JHM(R™ x RT | R) — JY(R™ x R}, R)

is induced by Q. For any specific (zg,03), the induced map on jets over (g, ()

is linear. Hence, a polynomial basis for Hﬁr,ﬁo o1) TAPS under @ to a polynomial
£

K (zo,o’é) ’
Finally, the conditions on p imply that composition with idg= X p induces

(9.10) pP: JYRM x RE,R) — JHR" x R | R)

spanning set for H

¢ ¢
R (20,00) to one for Hj, (0,00) As p'(0)

is polynomial in o, compostion will take polynomials to polynomials. Also, poly-
nomials have moderate growth, so it follows that a polynomial spanning set for

so that p(® will send a spanning set of H

’Hfjﬁo,ao), given by 9.3 will be mapped by p® o QU¥+M) to a spanning set for
M (20,00)7 SO K satisfies condition (A). O
0,00)

Sufficient Condition for Transversality to H¢,. Given a property P’ of smooth func-
tions defined by transversality to a closed Whitney stratified set W', we would like
to determine when W' is transverse to HE.

First, for an important commonly occurring case, we can reduce verifying the
transversality of W' to H% to the case of a single fiber.

Proposition 9.5. Suppose that W' C JY(R™ xR, R) is invariant under the action
of the Poincaré scaling group PS. Let Wo = W' N JYR™ X R, R) (4 ,00)- Then,
W' is a trivial fiber bundle over R* x R} with fiber Wy. In order that W' is
transverse to HE it is necessary and sufficient that Wy is transverse to Hé (20,00)

(in JE(R™ x R:.aR)(wo ,Uo))'

Proof. W' is invariant under the action of P.S, which acts fiberwise on J¢(R™ x
R’ ,R) and transitively on R" x R’ . Hence, the same argument as in Proposition
4.9 implies that W' is a trivial fiber bundle with fiber Wy. As both W' and H%
are fiber bundles over R” x R, , transversality is equivalent to transversality of the
fibers in a given fiber J¢(R® x R}, R)(20,00)- Hence, the result follows. |

Suppose that G is an extended Gaussian kernel, and that W' is a closed Whitney
stratified set invariant under PS with fiber Wy over (xo,00). By Proposition 9.5,
there is a set of polynomials which forms a basis for ’Hg (20,00)" Hence,
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Corollary 9.6. A necessary and sufficient condition that W' is transverse to HE, is
that the polynomial basis spans a subspace transverse to Wy in J‘Z(R" xR, ]R)@0 ,00)
at every point of Wy.

We next give an alternate way to verify Corollary 9.6.

Corollary 9.7. Suppose K = p'*(Q(K")) is an extended Gaussian kernel with Q
of order M and p' a homomorphism as in Proposition 9.4, if we have W' invariant
under PS then a sufficient condition that W' is tranverse to Hb is that the im-
age of the polynomial basis for H?%o,oo) maps under pt& o QM) to o subspace
transverse to Wy.

We conclude this section with a final proposition that simplifies the verification
of Corollary 9.7.

Proposition 9.8. Suppose that K; is a multi-Gaussian kernel. Let () be a com-
position of first order operators of the form D HT:1 Dy, where each Dy, is a
derivative with respect to a nonzero vector u;. Then,

QUM Uy (L + M) — H, (£)
is surjective, where M = 2|a| + m.

Proof. () commutes with each L;, so that () maps Hg to itself. Then, we prove the
result by induction on the weighted degree 2|a| + m. Thus, it is enough to prove
the result for both Q = Dy, or Dy,. First, either of these only acts on one of the
factors in each product term in &. Hence, it is sufficient to prove the proposition
for a single (anisotropic) Gaussian kernel K.

First we consider a regular Gaussian kernel. For Dy, the proposition is proven
in [D4, Prop. 15.3]. Next, consider D,,. Since the space of solutions to the
(usual) heat equation is invariant under rotation, we may apply a rotation so that
Dy, = ¢+ D,,. Thus, it is enough to prove it for D, . Now we can repeat the
argument given in [D4, Prop. 15.3], but replacing D; by D, . Specifically, consider
the diagram

0 —— Hp L) Wi i)I/kaz—>0

(9.11) ml Ml %l

ik — L _
0 —— Hpo1 —— Wioq —— W3 —— 0

where W}, denotes the space of weighted homogeneous polynomials in (z,t) of
weighted degree k& and Hj denotes the weighted subspace space Hk, (k) of solu-
tions to the heat equation. Also, Ly = L : Wy — Wj_o, where L denotes the
heat operator, and «; denote the restriction of D, to the respective Wy or Hy, so
both as and a3 are surjective. As Ly is surjective, the rows are exact; hence, we
can apply the snake lemma as in [D4, Prop. 15.3] to obtain the exact sequence in
(9.12).

9.12) o — ker o _ ker ay L, ker a3

fh_1 Ly_1
— cokeray ——— cokeray —— cokerag ——— 0
As both ay and a3 are surjective, coker ay = cokeras = 0. It remains to see that
Ly : ker(ap) — ker(as) is surjective. As ap = D, |Wy, and ag = D, |Wi_a,
ker(as) (resp ker(as)) equals polynomials in Wy, (resp. Wg_s) which only depend
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on (z',t) = (%1,...,%n-1,t). However, the restriction of L is just the heat operator
for R"~1; hence, it is surjective as required, implying the result for the isotropic
Gaussian kernels.

Finally, we consider a general anisotropic heat equation as in (9.1). Then any

0
solution has the form p(A’ - z,t). First we observe Dy(p(A’ - z,t) = 6_115)(AI - x,t).

Hence, as Dy is surjective for the regular heat equation, it is surjective in this case.
Second, for Dy, we let p(x) = A’ - z. Then,

Dy, (p(AI “2,t)) = Du;(po ¢)
(9.13) =Dy, (p)(A" - z,1) where v; = dp(u;)

Then, as Dy, is surjective for solutions to the regular heat equation, as p varies over
weighted homogeneous solutions of weight k, we obtain from {Dy,(p)} , all possible
weighted homogeneous solutions of weight k£ — 1. Hence, from {Dy,(p)(A’ - z,t)}
we obtain all weighted homogeneous solutions to the anisotropic heat equation of
weight & — 1. Hence, the result follows. |

As a corollary, we give a specific spanning set for Hﬁ( (20,00)"

Corollary 9.9. Suppose K; is a multi-Gaussian kernel and Q is an operator of
the form o™ - D [1iL, Dy; with M = 2|a|+m. Let K be the kernel obtained from
Q(Ky) via substitution t; = 0?7 and tio = 20%,i=1,...,r. Then, a spanning set
for 'Hﬁ( (20,00) s given by

{(o0 +5)™p(Z, 006 + =5°)} mod m&h}

N | =

where p ranges over £y, and mz s denotes the ideal of smooth germs vanishing
when (%,5) = (0,0).

Proof. By Proposition 9.8, Q¢*M is surjective. hence, the result follows by applying
Proposition 9.3. O

Example 9.10. The medial kernel is a Gaussian-based kernel obtained by applying

the operator @ = —02 to the standard Gaussian kernel. In [D4] and [Mi] it is
o
shown that for n = 3,4, the associated operator

QY = I (n, 1) 0,00) = I (11, 1) 0,00)

restricted to the heat equation jet space Hfﬂ,o’g) is transverse to the closed Whitney
stratified set I' defining the relative critical set off strata of codimension > n. The
arguments used there are special cases for the medial kernel of the general results
given in Corollaries 9.7 and 9.9. They yield the genericity and stability results
stated in Example 8.7. In light of Theorems 6.3, 6.4 and Corollary 6.5, we conclude
that when we convolve L? functions, regular Borel measures, probability measures,
etc., we will obtain the same genericity and stability results.
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10. GEOMETRIC PROPERTIES OF DISCRIMINATION FUNCTIONS AND MEASURES
FOR FEATURE PRESENCE

Up to now our attention has focused on scale-based properties of the original
(uniformly) tempered distribution. Beginning with a (uniformly) tempered distri-
bution u, suppose we have a method for associating via an operation ¥ another tem-
pered distribution v = ¥(u) which identifies “how much of a given property” occurs
in a given region of physical space. We think of v as being a derived or associ-
ated distribution to u. This might be achieved by applying a differential operator,
comparing with a texture mask, applying a filter by convolving with an associated
kernel, such as e.g. a Gabor filter, which distinguishes certain geometric features.
Alternately, a statistical method (as given e.g. in [ZWM]) may be applied to obtain
a statistical measure for the amount of a property in a given region. This statis-
tical measure may be in the form of probability or Borel measure. We may now
apply scale-based geometry to v to deduce geometric information, in the form of a
geometric structure in scale space W (v x G), about the regions where the feature
detected by v occurs. This is schematically illustrated in diagram 10.1.

(10.1)
original derived scale [ convolved, geom  geometric
{ distrib. } { distrib. } { distrib. } { structure }
u — v=Yuw) —— vxG — WwxG)

10.1 (Question). To what extent will the generic scale-based properties normally
exhibited for spaces of distributions continue to be exhibited generically for the
derived or associated distributions v?

To answer this, we assume that the procedure for associating the disribution v
to u is given by a continuous operator

(10.2) T:T8,p o :T=S,

where 7" may denote a subspace of S s, S;,, or even D'. If we consider such
an operator given e.g. by convolution with a kernel K € S, A or S, then by
Theorems 2.5 and 3.7, such operators are continuous linear operators, and have
images smooth functions of (uniformly) moderate growth. Such filters could be
e.g. (non-scale-based) Gabor filters, edge detection kernels as in Example 4.4,
etc. Likewise operators given as linear partial differential operators with constant
coefficients defined on S}, , S;,, or finite dimensional extensions of these in D' are
also continuous.

Alternately we allow an operator which associates a measure to an original tem-
pered distribution. One basic example occurs for the detection of “textures” in
images. As already mentioned, there has been considerable work devoted to char-
acterizing in terms of various associated objects, involving measures, wavelets, etc.
(see e.g. [Ju], [ZWM], [Mal]). Rather than identify a texture, we are simply in-
terested in an operation which detects a distinguishing feature of a texture. We
will also consider the case that the amount of distinguishing feature appearing in
a given region can be expressed by a measure.

We will not concern ourselves here with the details of how such a tempered
distribution is constructed, although we do assume that it is given by a continuous



58 JAMES DAMON

operator as in (10.2). If we apply a scale-based geometric property P to ¥(u), can
we expect that it will be generically exhibited on compact subsets of scale space?
Unlike the results of §6, we cannot expect in general that the subspace of derived
distributions will satisfy condition (B), especially those defined by detecting specific
texture properties which require a specific choice of scale. Instead, we should expect
that if the object or region exhibiting the property is large compared to the scale of
the detected property then it is possible to have sufficient robustness of the derived
distributions to obtain generic properties in the larger scale range. Hence, we shall
state all results in terms of a given compact region of scale space C.

In the case that ¥ is nonlinear, there are so many ways to introduce nonlinearities
that the best we can do is state a general result that still requires considerable work
to verify. It is a corollary of Theorem 6.3, and gives a positive answer in terms of
the composition of the map ¥|7 with cg (or ca, ) having smooth image in the
sense of [D2, Def. 1.1], with image equal to H§ (resp. H§ ¢)-

Proposition 10.2. Suppose G is a scale-based the kernel, P is a transversely
defined scale-based property (via W ), and C is a compact subset of scale space. Let
T be a continuous operator as in (10.2). Given T C S  or S, (or D'), suppose
there is an open subset U of scale space with C C U such that the composition of ¥
with cg (resp. ca,c) has smooth image on U, with image equal to H5(U) (resp.
Hﬁ’G(U)). Then, there is an open dense subset of T consisting of u for which the
G—convolution U(u) x G will exhibit P generically on C. The geometric structure
has generic local structure Wi,.(x) for z in the interior of C, and the structure is
structurally stable on C'.

Proof. Asin the proof of Theorem 6.3, this is a consequence of the relative transver-
sality theorem. P is defined by transversality to the closed Whitney stratified set
W C HE (resp. Hﬁ’G). Let i: T < &, (or S}, ») denote the inclusion map, and
let r denote restriction to U. The composition r o ¢g o ¥ o ¢ ( or with ¢p, ¢ in
place of ¢g) is continuous. The assumption that it has smooth image with image
HE(U) (resp. Hﬁ ¢(U)) implies by the relative transversality theorem that for the
compact subset of scale space C' C U, the set of u € T such that j*(¥(u) * G) is
transverse to W relative to Hg(U) (resp. Hf o(U)) is an open dense subset of
T. Then, the local generic structure and the stability on compact subsets follow
exactly as earlier. a

To use this theorem we must be able to verify the condition of smooth image.
This will vary considerably for various nonlinear operators. We limit ourselves here
to the linear case. First, we observe a property of scale-based kernels.

Proposition 10.3. Suppose the scale-based kernel G satisfies condition (A). Let
C be a compact subset of scale space.

(1) There is a finite dimensional subspace V of S;, (resp. S ) consisting of
smooth non—negative functions of compact support, so that the map from V
to HE, (20,M0) (resp. Hf\,G (wo,)\o)) given by u — ¢ (uxG)(zo, Xo) is surjective
for all (zo, o) € C (and hence for an open subset U containing C).

(2) Alternately, given a mesh B, there is a refinement B' and a finite dimen-
sional subspace of discrete non—negative functions of compact support de-
fined using B', which has the same surjectivity properties as in 1).
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(3) Given bases {p;} for the subspaces in either 1) and 2), there is ane > 0 so
that if a subset of functions {¢};} of compact support with each ¢; € S, are
within € of ; in the (essential) sup norm, then {¢} also span a subspace
satisfying the surjectivity conditions in 1) (and 2)).

Proof. We first establish the result for smooth non-negative functions of com-
pact support. By Proposition 6.6 and the action of the Poincaré scaling group,
given (zg,Ag) € C there is a finite set of smooth non-negative functions of com-
pact support {p;,i = 1...7} such that j¢(p; * G) (w0, \o) span Hé(zo,/\o) (resp.
Hﬁ’G($07AO)). Then there is an open neighborhood U; of (zg,\o) in scale space
such that j*(¢;G)(z0, o) span 1, . .,y (resp. HY (5, ) forall (z1, M) € Us.
As C is compact, it can be covered by a finite number of such U;. The subspace
spanned by the {y;} corresponding to the finite cover have the desired property.
To obtain the analogous result for discrete functions, we first use the argument
of §7, to approximate {p;,i = 1...r} by discrete functions of compact support
{¢},i=1...r} defined on a refinement B; so that j¢(¢;*xG)(zo, Ao) span HE (20,20)
(resp. Hﬁ,c (o, )\0)). Then, the rest of the argument is the same, where at the last
step we must choose a common refinement B’ on which all of the ¢} are defined.
By the openness of the surjectivity condition and the continuity of cg or ca,q,
we can find an € > 0 so that if we replace ¢; by another set of functions ¢} each
within £ in the (essential) sup—norm, then this set will still satisfy the surjectivity
condition.
O

Given a scale-based kernel G satisfying condition (A), we generally introduce
for a linear operator ¥ in (10.2) a substitute for condition (B).

Definition 10.4. Given a compact subset of scale space C, the linear operator ¥
satisfies condition (B¢) if there is a finite dimensional V C T, so that the map from
V10 He (30 20y @D HE G (20.00)) BiVen by u = j8(u * G)(w0, Ao) is surjective for
all (zg,Ag) € C (and hence for an open subset U containing C).

As a simple consequence, we have.

Theorem 10.5. Suppose that G is a scale-based kernel satisfying condition (A),
C is a compact subset of scale space, and ¥ satisfies condition (Bc). Then, ¥
has smooth image on an open set U containing C. Hence, given any transversally
defined scale-based geometric property P, there is an open dense subset of u € T
such that U(u) x G exhibit P generically and stably on C.

Proof. We use the subspace V to establish the smooth image of ¥ on U just as
in the proof of Theorem 5.8. Then, Proposition 10.2 yields the genericity and
stability. a

Thus, to deduce genericity and stability results for associated distributions, it
is sufficient by Theorem 10.5 to verify that various operators ¥ satisfy condition
(B¢). For this, we will apply Proposition 10.3 and show that the finite dimensional
subspaces of smooth functions with compact support or discrete functions given
there are in the image of .
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U defined by Partial Differential Operators. Let P(D) be a linear partial differential
operator with constant coefficients. It defines an operator ¥ = P(D) as in (10.2),
(note in the case of T C D', not all of D' need be mapped to S},). Given a scale—
based kernel G satisfying condition (A) and a compact subset C' of scale space,
we seek conditions ensuring that ¥ satisfies condition (B¢). It is sufficient to
show by Proposition 10.3 that image(¥) contains the finite dimensional subspace
of smooth functions with compact support satisfying the surjectivity condition in
that proposition. For this we use results of Malgrange-Ehrenpreis and Nirenberg
on solutions to constant coefficient PDE’s.

1) First, by the Malgrange-Ehrenpreis Theorem, the equation P(D)(u) = g has
a fundamental solution K so P(D)(K) = ¢ where ¢ is the Dirac distribution. If
K € 8], then for any g € &/, g* K € S], and is a solution. Hence, in this
case ¥ maps onto &), in particular its image contains all smooth functions with
compact support. For example, the fundamental solution for the Laplacian A on
R* is K(z) = c- ||z||> ™ if n # 2 (or ¢-log(z) if n = 2). For either of these,
(1+ ||z]>)"1K(z) € L*(R"), so K defines a tempered distribution.

2) Second, if the fundamental solution is not in S}, then we can still apply a
Theorem of Nirenberg (see e.g. [Fo2, Chap. 2]) which asserts that if g is smooth of
compact support, then there is a smooth function « which is a solution of P(D)(u) =
g. Hence, if we allow u to vary over smooth functions, then the image of ¥ contains
any given subspace of smooth functions with compact support.

Combining these results with Proposition 10.3 we conclude that Question 10.1
has a positive answer for such operators.

Corollary 10.6. Suppose G is a scale-based kernel satisfying condition (A), and
C is a compact subspace of scale space. If ¥ = P(D), a linear partial differential
operator with constant coefficients, then there is a finite dimensional subspace V of
smooth functions (or a finite dimensional subspace of S!, if P(D) has a fundamental
solution in S},) which satisfies condition (Bc). Thus, expanding any subspace of
S, by this finite dimensional subspace gives a subspace T on which ¥ satisfies the
conclusions of Theorem 10.5 on generically and stably on C.

Second we consider conditions using the finite dimensional subspace of discrete
functions provided by Proposition 10.3.

Satisfying condition (Bc) by approzimating “block functions”. Given a scale-based
kernel G satisfying condition (A), a compact subset of scale space C, and a mesh
B, we may alternately find a finite dimensional subspace of discrete functions of
compact support relative to a refinement B’ of B which satisfy condition (B¢). The
support is restricted to a finite subset of cells B; of B', and the space is spanned
by a finite set ¢} = )" a;;X;, where x; is the characteristic function for B;. By 3)
of Proposition 10.3, we can find an £ > 0 so that if we replace ¢} by another set of
functions ¢} each within € in, say, the (essential) sup—norm, then this set will still
satisfy the surjectivity condition in that proposition.

We refer to the characteristic function y; for the cell B; as a “block function” (see
Fig 6).

Suppose that there are m cells B; whose union form the common support. Also,
let @ = max;; |as;|; and finally let ¢’ = —=-. We consider an operator ¥ with the
property that for each block function x; there is a u; € T such that ¥(u;) is within
' of xj. Then, v; = ) a;ju; maps via ¥ to ¢ = > a;;¥(u;) which is within €
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FIGURE 6. A Block function on a square mesh for R?

of }. Hence, ¥ satisfies condition (B¢), so Question 10.1 has a positive answer in
this case.

Corollary 10.7. Suppose G is a scale-based kernel satisfying condition (A), and C
is a compact subspace of scale space. There is a refinement B' of the mesh B, a finite
subset of cells {Bj,j =1,...,m} (of B') and an € > 0 so that if ¥ approzimates
the block functions on the Bj,j = 1,...,m to within € in the (essential) sup—norm,
then U satisfies condition (Bc). Thus, U satisfies the conclusions of Theorem 10.5
on generically and stably on C.

Remark 10.8. We note that in the preceding discussion, we could have viewed
the simple measures associated to the ¢} and instead considered measures approx-
imating them, and obtained an analogous condition.

Simple Texture Discrimination with Generic Geometric Properties. We apply the
result of Corollary 10.7 to guarantee genericity and stability of scale-based geomet-
ric properties of associated texture discrimination distributions.

Suppose we are considering a scale-based kernel G satisfying condition (A),
and that C' is a compact subset of scale space. By the discussion in Corollary
10.7, there is a refinement B’ of B and a finite dimensional subspace spanned by
discrete functions of compact support defined using B’, which satisfy the surjectivity
condition in Proposition 10.3. To obtain generic scale-based geometric properties
for derived distributions defined using a linear operator ¥, it is sufficient to show
we can closely approximate the block functions x; to within e.

This suggests a crude method for detecting texture which guarantees generic
scale-based geometric properties on C. On each support cell B;, we fix a “mask
function” K; with support B;. We measure the amount of texture in a function g
on B; by the integral [ g- K, and associate a discrete function with this value on
B;. To extend this process to obtain a continuous linear operator on say S}, we
choose smooth K; and multiply by a bump function with support in B; and closely
approximating x;. If we still denote this function by K, then K; € S;,. Hence, we
define ¥ by ¥(u) = Y u(K;)x;- Provided ¢; = [ K7 # 0, lIl(cj_lKj) = x;. Thus,
by Corollary 10.7, ¥ satisfies condition (B¢). Hence, the derived distributions
U (u) measuing the texture on the support cells U; B; will have generic scale-based
geometric properties.

We further note that in the preceding argument we can replace S) by any
standard subspace T C S}, by choosing u; € T with support in B; such that
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¢; = uj(Kj;) # 0, so ‘Il(c;-*1 -uj;) = X;. Also, we can extend texture discrimination
to additional cells. This will make no difference in the genericity statements.
Corollary 10.9. Suppose G is a scale-based kernel satisfying condition (A), T is
o subspace of S,, closed under nonnegative linear combinations, and C is a compact
subspace of scale space. Consider the refinement B' of the mesh B, with finitely
many support cells {B;,j =1,...,m} and the e > 0 for the compact subset C given
by Proposition 10.3. If there are smooth texture masks K; and u; € T both with
support in Bj,j = 1,...,m such that u;(K;) # 0, then the texture discrimination
operation

(10.3) T(u) = Zu(Kj)xj

satisfies condition (Bc). Thus, by Theorem 10.5 given any transversally defined
scale-based geometric property P, there is an open dense subset of u € T such that
U(u) * G exhibit P generically and stably on C.

Remark 10.10. Hence, this simple form of texture discrimination given in (10.3)
will yield detection distributions with generic scale-based geometric properties on
C, including structural stability of the texture—defined geometric structures under
sufficiently small perturbations of the initial distributions! Of course, most discrim-
ination criteria will require taking maxima over a series of masks or apply statistical
techniques so they will be nonlinear. However, the arguments given here at least
provide some reason for optimism in expecting that provided that the texture scale
in sufficiently small compared to that of the objects possessing it, the associated
scale-based geometric properties will have generic properties.

11. VECTOR-VALUED DISTRIBUTIONS

In this section we expand our earlier results so they apply to vector—valued dis-
tributions with values in RP. These are equivalent to p—tuples of distributions.
For example, these can arise from color images which are 3—dimensional distribu-
tions measuring intensity, color, and hue. Also, if we consider a single (uniformly)
tempered distribution, but we wish to simultaneously consider several geometric
properties, then we will associate a tuple of derived distributions obtained by ap-
plying a set of operations.

We begin by considering the geometric properties of a set of independent distri-
butions; and establish the genericity of simultaneous geometric properties.

Vector-valued (Uniformly) Tempered Distributions S(R® x A, RP)*. We consider
generally a p-tuple of uniformly tempered distributions

u = (ug,...,up) € (;,A)pZS;,Ax"'XS;,A

We denote the Schwarz space of uniformly rapidly decreasing functions mapping
to R? by S(R® x A,RP) (abbreviated ST(L”J 3\) and the space of uniformly tempered
distibutions by S(R™ x A, RP)* (or more simply by S:L,([{’)). Likewise, we denote p—
tuples of tempered distributions by S(R™, RP)’ (or just S ))

Then, given G = (G4,...,Gp) € S(R™ x A,RP), then for u € 3:;,(1{)) = (S(R™ x
A,RP)*) (or SiP) we can define u % G = (uy * Gy,...,up * Gp). By Theorem 3.7
applied to each coordinate of uxG, we see uxG € C®(R" x A)? ~ C®(R" x A, RP).
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For fixed G, this defines a linear transformation
(11.1) ea,q t S(R® x A,RP)* — C*(R" x A,RP)

The restriction of ca, g to S;l(p ) will again be denoted by cg. Applying Theorem
3.7, we see these maps ca, ¢ and cg are continuous. Analogous to §4, we let HI(\’? )G
(resp. ’Hg)) denote the image of cp, ¢ (resp. c¢g) in C®(R" x A,RP). Asin (4.13),
we define

(11.2) 1YW L U@, f =uxG for u € SR x A, RP)*}

We have an analogous definition for Hé(p ),

By the coordinatewise definitions of ca, ¢ and cg,

¢,
(11.3) 1 o~ [ Hie
R™ xRk
and
(11.4) ne” o~ I &
R™xRE
where the products on the right are fiber products over R” x ]Ri fori=1,...,p.

Then, (11.3) and (11.4) induce diffeomorphisms of the fibers over a point (2o, Ao) €
R™ x Ri which on the RHS are products of fibers of convolution jet spaces.

Definition 11.1. We say a multi-kernel G = (G4, ...,G)) € S is a scale-based
multi-kernel if there is a single scaling group ]R’jr such that for each ¢ there is an
action of Rﬁ on R™ for which G; is scale-based.

Note we do not require that the action be the same for each G;; in fact, it can be
different for each 4, allowing us to simultaneously consider different scaling behavior
for different distributions.

In this case, we can still deduce the structure of Hé(p ) and Hf;’(’é)

Proposition 11.2. If G is scale-based then for A = RE | both ’Hé(p) and Hf;’(’g are

(1) trivial fiber bundles over R™ x A, and
(2) semi-algebraic submanifolds of J¢(R™ x A, RP).

Proof. We consider the case of Hﬁ’f@, with similar arguments applying to ’Hé(p ),
First, by Proposition 4.9 each Hfak ¢, is afiber bundle over R" x R’i with smooth
+0 &

fiber. Hence, the fiber product of the ’H]ék . is again a fiber bundle over R™ x ]R’i,

kG
with fibers equal to the product of the individual fibers, and hence, smooth. By
(11.3), this is 'H]f;f,(f)g. This still holds for the restriction to any R x A.
+7
Second, again by Proposition 4.9, ’Hfﬁi G is a semi-algebraic subset of J¢(R™ x

R ). Let
P P
m: [ 7R x RE) - TR x RE)
i=1 i=1
denote the product of the natural projections. Then by (11.3)

p

L, — n

(11.5) HR_ﬁfj)G = JI#hs, 6 N0 AR < RY))
i=1
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where A(R" x RY) denote the diagonal. As 7 is algebraic, the RHS of (11.5),

presents Hp), ’(p )

Thus, ’Hﬁ (p ) is semi-algebraic. O

as the intersection of two sets each of which is semi-algebraic.

Contrary to the case of a single distribution, there is a coordinatewise action of
the Poincaré group PS defined from the single scaling group R’i. However, it is not
induced geometrically for vector valued distributions as it was in Proposition 4.7.

Then, we still have the analogue of Theorem 5.8.

Theorem 11.3. Suppose G be a scale-based multi-kernel on R™ x ]Ri.

1)  Suppose W is a closed Whitney stratified subset of H} ’(p) with strata W;,
then for a compact set C C (R* x A), the set of uniformly tempered distributions

(11.6) W={ues} (p) : j(u x G) is transverse on C to all W;(in Hf;”(’g)}

is an open dense subset of 5:,1{)
2) If instead, W is a closed Whitney stratified subset of ’Hé(p), then

(11.7) ={u eS8 W :j'uxQG) is transverse on C to all W;(in HE (p))}
is an open dense subset of Sn(p).

Proof. By the proof of Theorem 5.8, there is for each factor in (11.3) (resp. (11.4))
a finite dimensional subspace V; which maps submersively onto ’Hf& Gi (2 \) (resp.

’Hgi (z,’}\,)) for all (z',)') in a neighborhood U of (xg,A¢). Then, the product
V = [, Vi satisfies the condition of smooth image for the relative transversality
theorem applied to ca, ¢ and cg , implying that W is open and dense. O

Example 11.4. Let G be a scale-based multi—kernel. Suppose the property P; is

defined by transversality to a closed Whitney stratified subset W) c 'Hf;, g, (resp.

H¢,,) with strata {W(i)} Then, by (11.3), W = [[,W® is a closed Whitney

stratified subset of HE 2) (resp. H, {(P)y with strata I, W(z). The simultaneous

occurence of the propertles P; for the u; * G; is given by transversahty to W.
Hence, we conclude

Corollary 11.5. Suppose G = (G1,...,G)p) is a scale-based multi-kernel. If P; are
transversally defined scale-based properties (for the kernel G;), then for a compact

subset C of scale space, there is an open, dense subset of u = (u1,...,up) € S* (p)

(or A ) such that each u; * G exhibits P; generically on C, and moreover, the
Whitney stratified sets W;(u; * G) for i =1,...,p intersect tranversally on C.

Proof. By Theorem 11.3, j¢(uxG) is transverse to W = [[, W, which is equivalent
to each j¢(u; * G;) being transverse to each W and the W;(u; * G) = j¢(u; *
G;)~ (W) intersecting transversally. O

Corollary 11.6. Suppose G is a scale-based multi-kernel. If W is tranverse to
H (p) (resp. HG(p)), then on a compact subset C' of scale space, there is an open

dense subset of u € S (p) (resp. Sn(p)) such that W (u x G) exhibits on C the same
generic properties as for generic smooth functions
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Example 11.7. Interesting singularity—theoretic properties of the smooth mapping
f = uxG can also be investigated for vector-valued distributions u. Such properties
are frequently defined by Whitney stratified sets W C J*(R™ x A, RP). For example,
the simplest structure is the singular set of the associated mapping, (f), which
consists of points (z,\) € R” x A such that rank(df(z,))) < r = min{n + k, p}.
2(f) = j4(f)"1(21), where ¥; denotes the 1-jets of corank > 0, i.e. rank < r.
It identifies the points where the (derivatives of the) coordinate functions of f,
fi = u; x G; are dependent.

For the case where the kernels G; are extended Gaussian kernels for which the
differential operators are of the form considered in Proposition 9.8, we have the
1-jets will contain all linear terms in the z; (modulo higher order terms). For
the linear terms involving scale parameters, the precise statement is more subtle.
However, in the case there is a single common scale parameter o for all G;, we obtain
in each component independent linear terms in ¢. Thus, we obtain that ’Hg) =
JYH(R™ x R, ). Hence, by Theorem 11.3, the G-convolutions will generically exhibit
the ¥;—singularities for each j. For example, for two distributions, although the
individual geometric properties are exhibited generically, there will be a dependence
between (the derivatives of) their G;—convolutions on a curve in scale space.

Just as we deduced consequences of Theorem 5.8 for the genericity and local
stability (Theorems 5.10 and 5.11, we can deduce analogous results for S:L,(,f) and

S;L(P) .

Theorem 11.8 (Scale-based Generic Structure and Structural Stability). Suppose
G is a scale-based multi-kernel and that P scale-based geometric property defined
by transversality to a closed Whitney stratified subset W of Hf;”(lg (resp. "Hé(p ) ).
Also, suppose f = uxG exhibits P generically on a compact subset C of scale space.

1) At an interior point (zg, Ag) of C, there is a strata preserving local homeo-
morphism

(W(f), (@0, 20)) = (Wioe(5*(f) (w0, 20)) X R™, (§*(£) (w0, 20), 0))

where m = n — codim (W;) for j¢(f)(zo, Xo) € W;.

2) If C is an n + k manifold with boundaries and corners so W (f) intersects
OC transversely, then, there is an open neighborhood U of u in S:ff) (resp. SA(’D ) )
such that for u' € U, f' = u' * G exhibits P generically on C, and there is a strata
preserving homeomorphism of C sending W(f)NC to W(f')NC, which is smooth
on each stratum.

The proof follows exactly that given for Theorems 5.10 and 5.11 using the Thom
Isotopy Theorem.

Furthermore, there is an analogue of Theorem 6.3 for vector—valued distributions.
To state it, we extend two definitions. By G = (G1,...,G,) satisfying condition
(A), we mean that each G; satisfies condition (A). Likewise, we give an analogue
of Definition 6.2

Definition 11.9. A subspace 7 C S s said to satisfy condition (B) if (as for
Definition 6.2): 1) T is closed under nonnegative linear combinations; and 2) T
contains the space of smooth functions in C*°(R" x A,RP) which have compact
support and whose coordinate functions are nonnegative.
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For example, given subspaces 7; C S, 5 (or Sy) which satisfy condition (B), then
T =Ti x--- x Tp also satisfies condition (B). Then, the analogue of Theorem 6.3
is the following.

Theorem 11.10. Suppose that G satisfies condition (A) and T satisfies condition
(B). Let P be a scale-based property defined by transversality to a closed Whitney

stratified subset W C Hf;’(g (resp. Hé(p)). Then, on any compact subset C' C
R™ x A, P is generic for G—convolutions of distributions in T. The local generic
structure of W(u x Q) is given on C by {Wi,.(2)}; and W (u x G) is structurally
stable on C under sufficiently small perturbations of u € T .

Proof. Aseach G; satisfies condition (A), by Proposition 6.6, there is a finite dimen-
sional subspace V; spanned by smooth nonnegative functions of compact support
whose convolution with G; composed with j¢(-)(x,Ag) maps submersively onto

’Hf;’,(g) (z0,%0) (resp. Hé((pw)o’ )\0)). Let V =[], Vi, which is a subspace of 7 by condi-
tion 2) of 11.9. Then, we repeat the argument given for Theorem 6.3 to show that
V satisfies the condition of smooth image for the relative transversality theorem.

This implies the desired genericity. The remaining results follow as earlier. O

Remark 11.11. Although we do not explicitly state them, there are also analogues
of Corollary 6.5 if e.g. T = [ 7; where each 7; is a space of probability measures,
provided that W is invariant under the individual actions of scalar multiplication
on each corrdinate. Also, there are analogues of the results of §7 for discrete vector—
valued functions and measures.

12. MULTI-FEATURE GEOMETRY

In the preceding section we established that independent tempered distributions
can simultaneously generically exhibit distinct geometric properties genericially on
a compact subset C of scale space. We now consider a related question for a sin-
gle tempered distribution. Suppose we associate to a single distribution a finite
collection of distributions. For example, we might consider a distinct collection
of features/textures which can be discriminated using a collection of filters or sta-
tistical measures. This associates a collection of distributions, each capturing the
amount of one of these features, textures, etc. present in a given region of space. We
then would like to deduce the simultaneous geometric properties of the collection
of features.

In this section, we show that given a compact subset C' of scale space, pro-
vided the collection of features/textures are “sufficiently independent”on a sub-
space T C S}, 4 (or &), then, the collection of geometric properties of features will
be simultaneously exhibited generically on C for a dense open subset of (uniformly)
tempered distributions in 7.

To explain this independence, we consider a collection of continuous operators

(12.1) U :T =8, o ¥:T=S,

which discriminate various features or textures, as given in §10. We define an
associated operator ¥ = (¥q,...,¥,)

(12.2) TS8P o T:ToS®
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Definition 12.1. Given a scale-based multi-kernel GG, and a compact subset of
scale space C', we say the collection of operators ¥; discriminating features, textures,
etc. are generically independent on C for the subspace T, if there is an open neigh-
borhood U of C so the composition of the associated operator ¥ = (¥q,...,T,)
with convolution cg (resp. ca,g) and restriction to U has smooth image, with

image equal to ’Hé(p)(U) (resp. ’Hf\”(’g 0)).
We consider properties P defined for smooth functions in Hg’j )G (resp. ’Hg’ )),

defined by transversality to a closed Whitney stratified subset W of ’Hf;’,(g) (resp.

’Hé(p )). Such a property might, for example, denote the simultaneous occurrence
of p distinct properties for the distinct coordinate functions as in Example 11.4.
For (uniformly) tempered distributions u, we ask whether for a collection of p
features/textures defined by operators ¥;,the features will simultaneously exhibit
the property P.

Proposition 12.2. For a scale-based multi-kernel G = (G1,...,Gp), suppose the
property P is a transversally defined scale-based property. Let ¥; be continuous
operators discriminating features, textures, etc. as in (12.1). If C is a compact
subset of scale space, and the ¥; are generically independent on C for the sub-
space T, then there is an open dense subset of T consisting of u for which the
G-convolution f = U(u) * G will exhibit P generically on C. Furthermore, W (f)
has generic local properties given by {W;i,c} and is stable under any sufficiently
small perturbation of u in T.

Proof. This proof virtually repeats the proof of Proposition 10.2, using the relative
transversality theorem. If 4: T — S], (or Sy, A) denotes the inclusion map, and r
restriction to U, the composition 7 o ¢g o ¥ o i ( or with ca, ¢ in place of cg) is
continuous. The condition that the operators ¥; are generically independent asserts
that the composition has smooth image with image Hf;”(’g (U) (resp. ’Hé(p ) (U)). The
relative transversality theorem implies that for the compact subset C C U, the set
of u € T such that j¢(¥(u)*Q) is transverse on C to W relative to Hf&y o (resp. HE)
is an open dense subset of 7. Then, the local generic structure and the stability
on compact subsets follow exactly as earlier. |

Generic Independence of Multifeature Properties. As in §10, we will apply Proposi-
tion 12.2 to feature—detection operators ¥; which are linear. These occurred in the
three situations considered in §10. We examine the form that generic independence
takes for each of these classes of operators.

U; defined by Partial Differential Operators. Suppose each ¥; = P;(D),i=1,...,p
are linear differential operators with constant coefficients. By Corollary 10.6, we
know that each operator individually will generically yield distributions with generic
scale-based geometric properties. THe simultaneous behavior of the set of operators
depends very heavily on the operators themselves. In particular, the solution spaces
for P;(D)(u) = 0.

Corollary 12.3. Let G is a scale-based multi kernel satisfying condition (A), and
let C be a compact subspace of scale space. Suppose ¥ is an operator as in (12.2)
defined via V; = P;(D), which are linear partial differential operators with constant
coefficients. Let T; = Njx; ker(P;y(D)). If ¥;|T; satisfies condition (Bc) for each
i=1,...,p, then the ¥; are generically independent on C. Hence, the conclusions
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of Proposition 12.2 apply to yield scale-based genericity and stability for ¥(u) x G
forueT.

Generic Independence by approximating “block functions”. Second, we consider suf-
ficient conditions for generic independence by approximating “block functions”.

Suppose the scale-based multi—kernel G satisfies condition (A). Let C be a com-
pact subset of scale space. Given a mesh B, by Proposition 10.3, we may find for
each G; a finite dimensional subspace V; of discrete functions of compact support
relative to a refinement B; of B which satisfy condition (B¢). We may then choose
a common refinement B’ of the B;, and assume that each of the finite dimensional
subspaces is defined on B’. The combined support is restricted to a finite subset
of cells B; of B'. The space V; is spanned by a finite set gog-z) = Y @ijk Xk, Where
as earlier xj is the characteristic function for B; (or a “block function”). By 3) of
Proposition 10.3, we can find a common & > 0 so that if for any i = 1,...,p, we re-
place {(pg-’)} by another set of functions {(py) "1 each within ¢ in, say, the (essential)
sup—norm, then this set will still satisfy the surjectivity condition in Proposition
10.3.

Then, we can repeat the argument given for Corollary 10.7 for each set of func-
tions spanning each V; to conclude that there is an &’ > 0 so that:

if there exist for each support cell B;, block function x; and each ¢ = 1,...,p,
there is a u;; € T such that either ¥;(u;;) is within €’ of x;, or ¥;(uy;) is within
e’ of 0 for i’ # 7 in the (essential) sup—norm), then

vij = Y aijrui, maps via ¥; to gog-’)' = > ajx ¥ (usk) which is within & of gog-z);
while ¥;(vy;) is within € of 0 (in the (essential) sup—norm).

We say that the ¥ = (¥4,...,¥,) satisfying the above condition independently
approzimate block functions to within &’ on the common support cells B;.

Corollary 12.4. Suppose G is a scale-based multi-kernel kernel satisfying condi-
tion (A), and C is a compact subspace of scale space. There is a refinement B’
of the mesh B, a finite subset of common support cells {B;,j =1,...,m} (of B')
and an € > 0 so that if U independently approzimates the block functions on the
Bj,j = 1,...,m to within €' in the (essential) sup-norm, then ¥ is generically
independent on C, and conclusions of Proposition 12.2 apply to yield scale-based
genericity and stability for ¥(u) x G foru € T.

Again we note we could have viewed the simple measures associated to the cpg-i)
and instead considered measures approximating them, and obtained an analogous

condition.

Generic Geometric Properties from Multiple Texture Discrimination. The preced-
ing Corollary can be applied as in the case of simple texture discrimination, to
deduce the genericity of geometric properties associated to multiple texture dis-
crimination.

Again let G be a scale-based multi—kernel satisfying condition (A), and let C be
a compact subset of scale space. By the discussion leading up to Corollary 12.4,
there is a refinement B’ of B, a finite set of cells of common support B;,j =1,...,m
and ¢’ > 0 so that if ¥ independently approximates the block functions on the {B;}
to within &’ in the (essential) sup—norm, then the ¥; are generically independent
on C.
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Suppose that each ¥; provides simple texture discrimination via (10.3). Thus,
for each ¢ = 1,...,p and each Bj, there is a smooth mask function K;; with
support in B;. By the mask functions Kj;; being independent on each Bj, we
mean there are tempered distributions w;; with support in Bj; so that (ue;(Kmj)
is a nonsingular p x p—matrix. This provides a sufficient condition that the simple
texture discrimination operators ¥; are generically independent.

Corollary 12.5. Suppose G is a scale-based multi—kernel satisfying condition (A),
T is o linear subspace of S}, and C is a compact subspace of scale space. Let B' be
the refinement of the mesh B, with finitely many support cells {B;,j = 1,...,m}
and let &' > 0 be given as above. If each ¥; denote simple texture discrimination
with a set of mask functions K;; which are independent for each suport cell Bj, then
the U; are generically independent on C. Hence, the conclusions of Proposition 12.2
apply to yield scale-based genericity and stability for ¥(u) * G for u € T.

Proof. To apply Corollary 12.4, we need only demonstrate that ¥ independently
approximates the block functions on the {B;}. However, if (ug;(Kp;)) is nonsin-
gular, then we can find linear combinations uy; of the u; so that (uy; (Kmj) = d¢m,
giving the desired result. O

Example 12.6. We apply the preceding to the simple detection of horizontal and
vertical stripes textures. Suppose that we choose a square mesh with sides of lengths
% Let H;; be the function which on the cell

equals sin(mNwy), and 0 on the other cells. We also define V;; to be the function
which on the cell B;; equals sin(mNwz), and equals 0 on the other cells. H;;
is a mask function for a texture of horizontal stripes on B;; and V;; is a mask
function for a texture of vertical stripes on B;; (fig. 7) . Although they are not
smooth we can either multiply them by a product of smooth bump functions which
approximate the characteristic functions of the intervals. Alternately, we can still
apply many classes of tempered distributions directly to them.

<y<

FIGURE 7. Striped Textures represented by positive and negative
values of H;; and V;; on cell of a square mesh for R?

It is easily checked that H;; and V;; are orthogonal. Hence, suppose we are
interested in medial or edge—based properties of regions exhibiting these textures to
some degree. Scale space will introduce a single scale parameter o for either kernel.
A compact region C of scale space implies a bounded region of physical space
together with bounds on the scale values. Then, Corollary 12.5 implies that based
on these bounds, there is a sufficiently large integer N so that the pairs of simple
horizontal and vertical stripe texture discrimination on the square mesh of sides
%, will simultaneously exhibit generic geometric properties for both textures on C,
with the standard local generic properties and stability under small perturbations.
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Example 12.7. Suppose we consider the textures consisting of 45 and 135—degree
line segments “\ “and “/ ”.as shown in figure 8 taken from Mumford [Mu, Chap.
4]. These textures define the letter “Z”. One way to distinguish the textures is
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FIGURE 8. Pair of textures defining letter Z taken from Mumford [Mu]

to define measures of the amount of each segment type in an Borel set U, by e.g.
assigning the sums of the lengths of the segments intersected with U. Alternately,
we could distinguish the textures using the simple method already described, by
rotating the square mesh 45—degrees. Then, the mask functions become rotated to
new functions Hj; and V; as in fig. 9.

H' 7 //// \A 7 \\\\

FIGURE 9. Striped Textures represented by positive and negative
values of H}; and V}; on cells of a rotated square mesh for R

Provided the frequence m is chosen sufficiently fine, the Mask functions will
detect significant proportions of the segments of one type and give essentially zero
response to the other type. Thus, by Corollary 12.5, for a fine enough mesh we
obtain discrimination functions which will generically have scale-based geometric
properties. For example, we illustrate in fig. 10 how the scale-based relative critical
set detects the medial properties of the Z and its complement. The scale-based
edges will detect the outline of the Z. They will look somewhat as shown. There
will be corresponding complementary relative critical set for the 135° discrimination
function. For the relative critical set (above a certain threshold) we see both the
ridges along the center of the Z, dashed connector sets continuing where the ridge
may break, and other connector and valley curves at higher scale where there is an
absence of “\ ”"segments. However, the edges for each discrimination function will
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be approximately the same in this case. We would obtain approximately the same
geometric features if we had used discrimination measures instead.
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FI1GURE 10. Relative Critical Sets and Edges for texture discrim-
ination for the letter Z
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