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Abstract. We introduce a method for modeling a configuration of objects
in 2D or 3D images using a mathematical “skeletal linking structure”which
will simultaneously capture the individual shape features of the objects and
their positional information relative to one another. The objects may either
have smooth boundaries and be disjoint from the others or share common
portions of their boundaries with other objects in a piecewise smooth manner.
These structures include a special class of “Blum medial linking structures”,
which are intrinsically associated to the configuration and build upon the Blum

medial axes of the individual objects. We give a classification of the properties
of Blum linking structures for generic configurations.

The skeletal linking structures add increased flexibility for modeling con-
figurations of objects by relaxing the Blum conditions and they extend in a
minimal way the individual “skeletal structures”which have been previously
used for modeling individual objects and capturing their geometric properties.
This allows for the mathematical methods introduced for single objects to be
significantly extended to the entire configuration of objects. These methods
not only capture the internal shape structures of the individual objects but
also the external structure of the neighboring regions of the objects.

In the subsequent second paper [DG2] we use these structures to identify
specific external regions which capture positional information about neighbor-
ing objects, and we develop numerical measures for closeness of portions of
objects and their significance for the configuration. This allows us to use the
same mathematical structures to simultaneously analyze both the shape prop-
erties of the individual objects and positional properties of the configuration.
This provides a framework for analyzing the statistical properties of collections
of similar configurations such as for applications to medical imaging.

1. Introduction

Given a collection of objects, a basic question is how we may simultaneously
model both the shapes of the individual objects and their positional information
relative to one another. Motivating examples are provided by 2D and 3D medical
images, in which we encounter collections of objects which might be organs, glands,
arteries, bones, etc (see e.g. Figure 1). A number of researchers have already
begun to recognize the importance of using the relative positions of objects in
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medical images to aid in analyzing physical features for diagnosis and treatment
(see especially the work of Stephen Pizer and coworkers in MIDAG at UNC for
both time series of a single patient and for populations of patients [LPJ], [GSJ],
[JSM], [JPR], [Jg], and [CP]).

In these papers, significant use is made of the mathematical methods which are
applied when modeling a single object using a “skeletal structure”[D1], [D3]. Such
a structure generally consists of a “skeletal set”, which is a stratified set within the
object, together with a multi-valued “radial vector field” from points on the set to
the boundary of the object. These form a flexible class of structures obtained by
relaxing conditions on Blum medial axes, and these allow one to overcome various
shortcomings of the Blum medial axis for modeling purposes. They have played an
important role by providing mathematical tools and numerical criteria for fitting
discrete deformable templates as models for the individual objects in 3D medial
images. These discrete templates, called “M-reps” or in their more general forms
“S-reps”, are discrete versions of skeletal structures where the skeletal set is a
polyhedral surface with boundary edge, which is topologically a 2-disk (versus the
Blum medial axis which would have singularities), and with vectors defined at the
vertices. In turn the fitting of the discrete deformable templates to individual
objects in the medical images combine the numerical criteria with statistical priors
formed from training sets of images. In carrying out the stages of fitting of the
models to the objects in the images, the mathematics of skeletal structures is used
to guarantee nonsingularity of the models, for the interpolation of the discrete
models to yield smooth surfaces, and for ensuring the regularity of resulting object
model boundaries.

This approach has been successfully used in numerous cases for modeling objects
in medical images, including e.g. the hippocampus, brain ventricles, corpus callo-
sum, kidney, liver, and pelvic area involving the prostate, bladder and rectum. For
example, many references to papers that use M-reps and S-reps for the analysis of
medical images of single objects are given in Chapters 1, 8 and 9 in the book edited
and partially written by S. Pizer and K. Siddiqi, see reference [PS].

For certain collection of objects they have have been combined with user chosen,
rather adhoc ways, to capture the relative positions between certain objects. While
considerable work has been devoted to the application to individual objects, there
has not been developed an effective mathematical approach for an entire collection.
It is the goal of this paper to describe a mathematical framework for modeling an
entire configuration of objects in 2D or 3D, which builds upon the success obtained
for individual objects.

We will concentrate on configurations of objects in 2D and 3D images. These
can be modeled by a collection of distinct compact regions {Ωi} in R

2 or R
3 with

piecewise smooth generic boundaries Bi, where each pair of regions are either dis-
joint or only meet along portions of their boundaries in specified generic ways (see
e.g. Figure 2). The mathematical results apply more generally to regions in R

n

(see [DG]) even though we concentrate here on R
2 and R

3.
The geometric properties of the configuration are determined by both the shapes

of the individual objects (regions) and their positions in the overall configuration.
The “shapes”of the regions capture both the local and global geometry (and topol-
ogy) of the regions. The overall “positional geometry”of the configuration involves
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such information as: the measure of relative closeness of portions of regions, char-
acterization of “neighboring regions,”and the “relative significance”of an individual
region within the configuration.

Single numerical measures such as the Gromov-Hausdorff distance between ob-
jects in such configurations measure overall differences without identifying specific
feature variations responsible for the differences. Also invariants that would be ap-
propriate for a collection of points fail to incorporate how shape differences between
objects contribute to differences in positional structure of such configurations. We
will introduce for such configurations “medial and skeletal linking structures,”which
allow us to simultaneously capture local and global shape properties of the individ-
ual objects and their “positional geometry.”

(a) (b)

Figure 1. Examples of 3-dimensional medical images (obtained
by MIDAG at UNC Chapel Hill) of a collection of physiologi-
cal objects which can be modeled by a multi-region configura-
tion. a) Prostate, bladder and rectum in pelvic region [CP] and
b) mandible, masseter muscle, and parotid gland in throat region
(modeled with a skeletal linking structure).

In doing so we have three goals:

(1) minimizing the redundancy of the geometric information provided by the
structure while allowing existing mathematical methods for single regions
to be extended to configurations;

(2) robustness of the structure’s properties under small perturbations of the
object’s shapes and positions in the configuration; and

(3) obtaining quantitative measures from the structure for use in statistical
analysis of populations of “configurations of the same type”.

To limit the amount of redundancy, the linking structures extend in a minimal
way the notion of a “skeletal structure”for a single compact region Ω with smooth
boundary B, developed by the first author [D1] (or see [D3] for regions in R

2 and
R

3). It consists of a pair (M,U), where the “skeletal set”M is a “Whitney stratified
set”in the region and U is a multivalued “radial vector field”defined on M . Skeletal
structures are a more flexible class of structures which relax several of the conditions
satisfied by the Blum medial axis of a region with smooth boundary [BN] The Blum
medial axis is a special type of skeletal structure (with U consisting of the vectors
from points of M to the points of tangency). The resulting skeletal structure still
retains the mathematical tools for analyzing the shape and geometric properties of
the associated region.
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Figure 2. Multi-region configuration in R
2.

The added linking structure consists of a multi-valued “linking function”ℓi de-
fined on the skeletal set Mi for each region Ωi and a refinement of the Whitney
stratification of Mi on which ℓi is stratawise smooth. The linking functions ℓi to-
gether with the radial vector fields Ui yield multivalued “linking vector fields”Li,
which satisfy certain linking conditions. Even though the structures are defined
on the skeletal sets within the regions, the linking vector fields allow us to capture
geometric properties of the external region as well.

A special type of skeletal linking structure is a Blum medial linking structure,
which builds upon the Blum medial axes of the individual regions. We classify the
properties of the Blum linking structures for generic configurations. In obtaining
this structure, we identify the regions which remain unlinked and classify their
local generic structure of their singular boundaries (which is also the singular set
of the convex hull of the configuration). We do this by introducing the spherical
axis, which is the analog of the Blum medial axis but for directions in R

n, instead
of distances; and it is defined using the family of height functions on the region
boundaries.

Just as for skeletal structures for single regions, the skeletal linking structure is
a more flexible structure obtained by relaxing a number of the conditions for the
Blum linking structure. This allows more flexibility in applying skeletal structures
to model objects. Then, as we have already explained, this flexibility is what allows
simplified skeletal structures to be used as discrete deformable templates for mod-
eling objects [P], overcoming the lack of C1-stability of the Blum medial axis, and
providing discrete models to which statistical analysis can be applied [P2]. Like-
wise the skeletal linking structures have analogous properties, exhibiting stability
under C1 perturbations and allowing discrete models for applying statistical anal-
ysis. This motivates their potential usefulness for modeling and computer imaging
questions for medicine and biology.

A skeletal structure enables both the local, relative, and global geometric prop-
erties of individual objects and their boundaries to be computed from the “medial
geometry”of the radial vector field on the skeletal structure [D2] and [D4] (or see
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[D3] for regions in R
2 and R

3). This includes conditions ensuring the nonsingularity
of a “radial flow”from the skeletal set to the boundary, providing a parametrization
of the object interior by the level sets of the flow and implying the smoothness of
the boundary [D1, Thm 2.5]. The medial/skeletal linking structure then extends
these results to apply to the entire collection of objects, and includes the global
geometry of the external region.

In Section 2, we explain what we mean by multi-object configurations and how
we mathematically model them using multi-region configurations. Next, in Section
3 we introduce medial/skeletal linking structures for multi-region configurations
and give their basic properties. In Section 4, we introduce two versions of a “Blum
linking structure”for a general configuration. We first give the generic properties
of the Blum medial axis for a region with singular boundary having corners and
edge curves (in the case of R

3). The Blum medial axis will now contain the singular
points of the boundaries in its closure and we give an “edge-corner normal form”that
the Blum medial axis will exhibit near such singular points. We further give the
local form of the stratification of the boundary by points associated to the singular
points of the medial axis. It is the generic interplay between these stratifications
for adjoining regions and the linking medial axis that gives the generic properties
of the linking structure.

For a generic multi-object configuration, which allows shared boundaries that
have singular points, we establish the existence of a generic “full Blum linking
structure”for the configuration (Theorem 4.13); and later list the generic linking
types for the 3D case in Section 6. In the special case where all of the regions are
disjoint with smooth generic boundaries, this directly yields a “Blum medial linking
structure”(Theorem 4.12). This special case for disjoint regions was obtained in the
thesis of the second author [Ga]. In Section 5 we explain how to modify for general
configurations the resulting full Blum linking structure near the singular points
of the boundaries to obtain a skeletal linking structure. Lastly in Section 7 we
explain how the method involving M-reps and S-reps used as deformable templates
for single regions can be expanded to obtain deformable templates for an entire
configuration based on skeletal linking structures.

In a second paper [DG2], we will use the linking structure we have introduced
to determine properties of the “positional geometry”of the configuration. This will
include: identifying distinguishing external regions capturing positional geometry;
identifying neighboring regions via linking between these regions; introducing and
computing numerical invariants of the positional geometry for measures of close-
ness and significance of regions in terms of volumetric measurements; computing
volumetric invariants (which involve regions outside the configuration) as “skeletal
linking integrals”; and combining these results to obtain a tiered graph structure
which provides a hierarchical ordering of the regions. This will provide for the
comparison and statistical analysis of collections of objects in R

2 and R
3.

The authors would like to thank Stephen Pizer for sharing with us his early work
with his coworkers involving multiple objects in medical images. This led us to seek
a completely mathematical approach to these problems.
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2. Modeling Multi-Object Configurations in R
2 and R

3

Local Models for Objects at Singular Points on Boundary. We begin by
defining what exactly we mean by a “multi-object configuration.”We consider ob-
jects which have smooth boundaries if they are separated from the other objects.
However, if two objects meet along their boundaries then we allow two different
situations, where objects either have flexible boundaries or are rigid. The result-
ing possible configurations depend upon which combinations occur. To model such
meetings along boundaries, we first describe the form that the object’s boundaries
take at the edges of such shared boundary regions.

First, we model the individual objects by compact connected 2D or 3D regions
Ω with boundaries B which are smooth manifolds with boundaries and corners. We
say that Ω is a manifold with boundaries and corners if each point x ∈ B is either
a smooth point of the boundary or is modeled, via a diffeomorphic mapping of
a neighborhood of the origin of R

2, resp. R
3, sending either a closed quadrant

or half space of R
2, resp. a closed octant, quarter-space, or half-space of R

3 to
a neighborhood of x in Ω, with the boundaries of these regions in R

2, resp. R
3,

mapping to the boundary B, see e.g. Figures 3 and 4.

a) b) c) d)

y

x

Figure 3. Model for a (crease) edge in R
3 a) and the general

curved edge b); the model for a corner in R
2 c) and the general

curved corner d).

y
x

z

e) f) g)

Figure 4. Model for a convex corner in R
3 e), and the corre-

sponding curved convex corner f). A concave corner g) may occur
where three boundaries of regions which are pairwise mutually ad-
joined meet at a point.

Then, the boundary B is stratified by the corner points, the edge curves (for R
3),

and the smooth boundary regions (referred to as regular points of the boundary).
The union of the corner points and edge curves (in R

3) form the singular points of
the boundary.

Second, we describe how we model objects sharing common boundary regions.
If two such regions intersect it will only be on their boundaries, and to describe the
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common boundary regions, we consider two cases depending on whether the regions
are all flexible, or one of them is rigid. In the first case, for 3D objects, we model
the edges of regions of common boundary regions by either a) P2; b) P3 in Figure
6. In these figures, one of the regions in the figures may denote the external region
complementary to the objects. If one of the regions is rigid then instead the regions
meet as in c) Q1 or d) Q2 in Figure 6, where the region with smooth boundary is
the rigid one, and again one of the other regions may denote the external region
complementary to the objects. For 2D objects, the local models for meeting are
more simply given by either points of type P2 in a) and b) in Figure 5 or type Q2

in c) and d) in the same figure. We refer to a configuration of regions satisfying
the above two conditions regarding their boundary structure and their common
boundary regions as satisfying the combined boundary intersection condition.

a) b) c) d)

Figure 5. Generic local forms for adjoining regions in R
2: type

P2 consisting of a) two flexible regions meeting and b) three flexible
regions meeting; or type Q2 consisting of c) a flexible region meet-
ing a rigid region and d) two flexible regions meeting a rigid region
(with the darker rigid region below having the smooth boundary).

(a) (b) (c) (d)

Figure 6. Generic local forms for the boundaries where adjoin-
ing regions in R

3 meet: a) P2 and b) P3 represent the boundaries
of several flexible regions meeting, including possibly the exterior
region. Next, c) Q1; and d) Q2 represent the boundaries of flex-
ible region(s) meeting a rigid region (which is to the left and has
the smooth boundary). The actual boundaries are diffeomorphic
images of these models so the surfaces are in general curved and
not planar.

Remark 2.1. Physically such local configurations of type a) or b) in Figures 5 or 6
are generic when objects with flexible boundaries have physical contact. For exam-
ple, these are typical of the singularities occurring where multiple soap bubbles are
joined. In general Maxwell’s Principle from physics implies that for boundaries of
“conflicting regions” the singular boundaries have such specific forms (determined
by a singularity theoretic analysis of the energy potential functions). For c) and d),
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the region below the curve in Figure 5 or to the left of the plane in Figure 6 would
represent a rigid region with which one or more flexible regions have contact.

We are going to model a multi-object configuration mathematically with a multi-
region configuration, which we define next.

Definition 2.2. A multi-region configuration consists of a collection of compact
regions Ωi ⊂ R

2 or R
3, i = 1, ...,m, with smooth boundaries and corners Bi and

satisfying the combined boundary intersection condition.

Then, a multi-region configuration will encode as data : i) the topological struc-
ture of each region; ii) the regions which share common boundaries and their in-
dividual types (flexible or rigid); and iii) the topological structure of the shared
boundary regions between two regions. Different regions having the same data will
be viewed as having the same configuration type, and changes in the type will be
viewed as resulting from a transition of types, see e.g. §5.

The configuration type can change due to: regions that were disjoint coming in
contact, or the reverse; boundary regions of contact undergoing topological changes;
regions undergoing changes in their topological type (e.g. a hole being created or
destroyed); or more subtle positional changes. These are modeled by transitions of
configuration type. The generic transitions are the most common ones, but we will
not attempt to classify or analyze them here. If we wish to study variations and
modifications within a single configuration type, then these can be most effectively
described via an embedding mapping of a configuration which we consider next.

The Space of Equivalent Configurations via Mappings of a Model. We
introduce a model configuration ∆ for Ω in R

n+1, n = 1, 2 which is a configuration
of multi-regions {∆i} satisfying Definition 2.2. A configuration of the same type as
Ω will be obtained by an embedding Φ : ∆ → R

n+1. This means that Φ : ∪i∆i →
R

n+1 extends to a smooth embedding in some neighborhood, and it restricts to
diffeomorphisms ∆i ≃ Ωi for each i, with Bi denoting the boundary of Ωi. Even
though the configuration varies with Φ we still use the notation Ω for the resulting
(varying) image configuration (with a specific Φ understood). In particular, a
configuration of model type ∆ has all of the data of ∆ built into it, so different
regions Ωi and Ωj will meet along a shared boundary only when the corresponding
∆i and ∆j already do so and otherwise will not meet.

The space of configurations of type ∆ is given by the infinite dimensional space of
embeddings Emb (∆,Rn+1). Then, by generic properties of a configuration we will
mean properties satisfied for an open dense set of embeddings in Emb (∆,Rn+1).
This means that for a configuration that exhibits generic properties, a sufficiently
small perturbation will not destroy these properties, and if a configuration does
not exhibit these properties, “almost any arbitrarily small perturbation”which is
performed will ensure that it does. The generic properties which we give are shown
in [DG] to satisfy this property.

We say the regions Ωi and Ωj are adjoining regions if Bi ∩ Bj 6= ∅. Also, the
external boundary region of Bi will denote that portion of the boundary which is
shared by the external region. For example, in the multi-region configuration Ω
in Figure 2 the regions Ω1, Ω5, Ω6, are adjoined to Ω2 (and Ω1 and Ω5 with each
other), and all of the regions have external boundary regions. These features will
persist for any configuration of the same type as this particular Ω.
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Remark 2.3. In the special case of a configuration consisting of disjoint regions
with smooth boundaries, each boundary is entirely external. In such a case, we
shall see that the geometric relations between the regions are entirely captured via
“linking behavior” in the external region.

Because the external region extends indefinitely, we will frequently find for com-
putational reasons that it is preferable to have the configuration contained in a
“bounded region”. By this we mean an ambient region Ω̃ so that Ωi ⊂ Ω̃ for each
i, then we say that Ω is a configuration bounded by Ω̃. Such a Ω̃ might be a bound-
ing box or disk or an intrinsic region containing the configuration. Then we will
also consider bounded configurations either given by an embedding Φ̃ : ∆̃ → R

2 or
R

3, with Φ̃(∆̃) denoting Ω̃, and Φ = Φ̃|∆; or we fix Ω̃ and consider embeddings

Φ : ∆ → int (Ω̃).

Configurations Allowing Containment of Regions. In our definition of a
multi-region configuration, we have explicitly excluded one region being contained
in another. However, given a configuration which allows this, we can easily identify
such a configuration with the type we have already given. To do so, if one region is
contained in another Ωi ⊂ Ωj , then we may represent Ωj as a union of two regions
Ωi and the closure of Ωj\(int (Ωi) ∪ (Bi ∩ Bj)), which we refer to as the region
complement to Ωi in Ωj . By repeating this process a number of times we arrive at
a representation of the configuration as a multi-region configuration in the sense of
Definition 2.2. See Figure 7.

Ω
a)

Ω
1

2Ω

Ω 3

Ω 4

b)

Figure 7. a) is a configuration of regions contained in a region Ω.
It is equivalent to a multi-region configuration b) which is without
inclusion.

3. Skeletal Linking Structures for Multi-Region Configurations in

R
2 and R

3

The skeletal linking structures for multi-object configurations will be constructed
for the multi-region configurations modeling them. They will build upon the skeletal
structures for individual regions. We begin by recalling their basic definitions and
simplest properties.

Skeletal Structures for Single Regions. We begin by recalling [D1] (or also
see [D3]) that a “skeletal structure”(M,U) in R

n+1 [D1, Def. 1.13], consists of: a
Whitney stratified set M which satisfies the conditions for being a “skeletal set”
[D1, Def. 1.2] and a multivalued “radial vector field” U on M which satisfies the
conditions of [D1, Def. 1.5] and the “local initial conditions”[D1, Def. 1.7]. M

consists of smooth strata of dimension n, and the set of singular strata Msing, with
∂M denoting the singular strata where M is locally a manifold with boundary (for
which we use special “boundary coordinates”). For images in R

2 and R
3, we are
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interested in the cases for n = 1, 2; however, the general description is independent
of dimension.

Without restating the conditions, we remark that these conditions allow each
value of U on a smooth point x of M to extend to a smooth vector field U on a
neighborhood of x, and various mathematical constructions on the smooth strata
to be extended to the singular strata Msing, see [D1, §2]. Using the multivalued

radial vector field U , we define a stratified set M̃ , called the “double of M” and a
finite-to-one stratified mapping π : M̃ →M , see [D1, §3]. Points of M̃ consist of all
pairs x̃ = (x, U) where U is a value of the radial vector field at x, and π(x, U) = x

(see Figure 8). M̃ provides a mathematical method to keep track of both sides
of each stratum of M . It also allows multivalued objects on M to be viewed as
single-valued objects on M̃ .

a) b) c)

Figure 8. a) illustrates a neighborhood of a point in M and the
multivalued vector fields . b) and c) illustrate the two correspond-

ing neighborhoods in M̃ .

Likewise we can keep track of the radial lines from each side of M with the
space N+ = M̃ × [0,∞), where for x̃ = (x, U) ∈ M̃ , the radial line (actually
a half-line) is parametrized by [0,∞) by c 7→ c · U . Then, using N+, we can
define the “radial flow”. In a neighborhood W of a point x0 ∈ M with a smooth
single-valued choice for U , we define a local representation of the radial flow by
ψt(x) = x + t · U(x). Together the local definitions yield a global radial flow as a
mapping Ψ : N+ → R

n+1 defined for x̃ = (x, U) by Ψ(x̃, t) = ψt(x). Beginning with
a skeletal structure (M,U), we can associate a “region” Ω which is the image Ψ(N1),

whereN1 = M̃×[0, 1], and its “boundary” B = {x+U(x) : x ∈M all values of U}.

U
B

M

Ω

Figure 9. Illustrating the radial flow from the skeletal set M ,
with the radial vector field U , flowing in the region Ω to the bound-
ary B, where the level sets are stratified sets forming a fibration of
Ω\M .

Provided certain curvature and compatibility conditions are satisfied, then by
[D1, Thm 2.5] the radial flow defines a stratawise smooth diffeomorphism between
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N1\M̃ and Ω\M ; however the level sets of the flow Bt are stratified rather than
being smooth. From the radial flow we define the radial map ψ1(x) = x + U(x)

from M̃ to B. We may then relate the boundary and skeletal set via the radial flow
and the radial map.

A standard example we consider will be the Blum medial axis M of a region Ω
with generic smooth boundary B and its associated (multivalued) radial vector field
U . Then, the associated boundary B will be the original boundary of the object.

The compatibility condition involves the compatibility 1-form ηU = dr + ωU ,
where ‖U‖ = r is the radial function and ωU (v) = v ·u where U = r ·u, with u the
multivalued unit vector field along U . Then, ηU is also multivalued with one value
for each value of U . If ηU vanishes on a neighborhood of x in a smooth region of
M , then U(x) is orthogonal to the boundary B at the point ψ1(x), and we refer to
U as being “partially Blum”at x. Also, if ηU vanishes on Msing, then the boundary
B will be weakly C1 on the image of the singular set. However, if it does not, then
the boundary will have corners and edges. Hence, skeletal structures can also be
used for regions with corners and edges.

Skeletal Linking Structures for Multi-Region Configurations.
We are ready to introduce skeletal linking structures for multi-region configura-

tions. These structures will accomplish multiple goals. The most significant are
the following.

i) Extend the skeletal structures for the individual regions in a minimal way to
obtain a unified structure which also incorporates the positional information
of the objects.

ii) For generic configurations of disjoint regions with smooth boundaries, pro-
vide a Blum medial linking structure which incorporates the Blum medial
axes of the individual objects.

iii) For general multi-region configurations with common boundaries, provide
for a modification of the resulting Blum structure to give a skeletal linking
structure.

iv) Handle both unbounded and bounded multi-region configurations.

In Part II [DG2] we shall also see that the skeletal linking structure has a second
important function allowing us to answer various questions involving the “positional
geometry”of the regions in the configuration.

Remark 3.1. Even though a configuration itself is bounded, the complement is
unbounded. The properties we shall give will be valid for the unbounded external
region; however, for both computational and measurement reasons, it is desirable
to consider the configuration as lying in a bounding region. This is the “bounded
case”. There are a number of possibilities for such bounding regions: intrinsic
bounding region, a bounding box, the convex hull, or a bounded region resulting
from imposing a threshold, etc. We shall consider further the relation of these with
a skeletal linking structure modeling a given configuration at the end of this section.

We begin by giving versions of the definition for both the bounded and un-
bounded cases.

Definition 3.2. A skeletal linking structure for a multi-region configuration {Ωi}
in R

2 or R
3 consists of a triple (Mi, Ui, ℓi) for each region Ωi with the following

properties.
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S1) (Mi, Ui) is a skeletal structure for Ωi for each i with Ui = ri · ui a scalar
multiple of ui a (multivalued) unit vector field and ri the multivalued radial
function on Mi.

S2) ℓi is a (multivalued) linking function defined on Mi (excluding the strata
Mi∞, see L4 below), with one value for each value of Ui, for which the
corresponding values satisfy ℓi ≥ ri, and it yields a (multivalued) linking
vector field Li = ℓi · ui .

S3) The canonical stratification of M̃i has a stratified refinement Si, which we
refer to as the labeled refinement.

By Si being a “labeled refinement”of the stratification M̃i we mean it is a refinement
in the usual sense of stratifications in that each stratum of M̃i is a union of strata
of Si; and they are labeled by the linking types which occur on the strata.

In addition, they satisfy the following four linking conditions.
Conditions for a skeletal linking structure

L1) ℓi and Li are continuous where defined on Mi and are smooth on strata of
Si.

L2) The “linking flow”(see (3.1) below) obtained by extending the radial flow
is nonsingular and for the strata Si j of Si, the images of the linking flow
are disjoint and each Wi j = {x+ Li(x) : x ∈ Si j} is smooth.

L3) The strata {Wi j} from the distinct regions either agree or are disjoint
and together they form a stratified set M0, which we shall refer to as the
(external) linking axis.

L4) There are strata Mi∞ ⊂ M̃i on which there is no linking so the linking
function ℓi is undefined. On the union of these strata M∞ = ∪iMi∞, the
global radial flow restricted to N+|M∞ is a diffeomorphism with image the

complement of the image of the linking flow. In the bounded case, with Ω̃
the enclosing region of the configuration, it is required that the boundary
of Ω̃ is transverse to the stratification of M0 and where the linking vector
field extends beyond Ω̃, it is truncated at the boundary of Ω̃ (this includes
M∞).

We denote the region on the boundary corresponding to M∞ by B∞ and that
corresponding to Mi∞ by Bi∞.

Remark 3.3. By property L4), Mi∞ does not exhibit any linking with any other
region. We will view it as either the unlinked region or alternately as being linked
to ∞, where we may view the linking function as being ∞ on Mi∞. In the bounded
case we modify the linking vector field so it is truncated at the boundary of Ω̃. We
can also introduce a “linking vector field on M∞” by extending the radial vector
field until it meets the boundary of Ω̃ (see e.g. Figure 12).

For this definition, we must define the “linking flow” which is an extension of
the radial flow. We define the linking flow from Mi by

λi(x, t) = x + χi(x, t)ui(x) where(3.1)

χi(x, t) =











2tri(x) 0 ≤ t ≤
1

2

2(1 − t)ri(x) + (2t− 1)ℓi(x)
1

2
≤ t ≤ 1

.
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Ω
1

2Ω

Ω 3

Ω 4

Figure 10. Multi-region configuration in R
2 and (a portion of)

the skeletal linking structure for the configuration. Shown are the
linking vector fields meeting on the (external) linking axis. The
linking flow moves along the lines from the medial axes to meet
at the (external) linking axis, which includes the portion of the
adjoined boundaries of Ω1 and Ω2.

As with the radial flow it is actually defined from M̃i (or M̃i\M∞). The combined
linking flows λi from all of the Mi will be jointly referred to as the linking flow λ.
For fixed t we will frequently denote λ(·, t) by λt.

Convention: It is convenient to view the collection of objects for the linking
structure as together forming a single object, so we will adopt notation for the
entire collection. This includes M for the union of the Mi for i > 0, and similarly
for M̃ . On M (or M̃) we have the radial vector field U and radial function r

formed from the individual Ui and ri, the linking function ℓ and linking vector
field L formed from the individual ℓi and Li; as well as the linking flow λ and M∞

already defined.

We see that for 0 ≤ t ≤ 1
2 the flow is the radial flow at twice its speed; hence,

the level sets of the linking flow, Bi t, for time 0 ≤ t ≤ 1
2 will be those of the radial

flow. For 1
2 ≤ t ≤ 1 the linking flow is from the boundary Bi to the linking strata

of the external medial linking axis.
By the linking flow being nonsingular we mean it is a piecewise smooth home-

omorphism, which for each stratum Si j ⊂ M̃i, is smooth and nonsingular on
Si j ×

[

0, 1
2

]

and either: Si j ×
[

1
2 , 1

]

is smooth and nonsingular if Si j is a stra-
tum associated to strata in Bi 0. For Si j not associated to strata in Bi 0, ℓi = ri on
Si j , so the linking flow on Si j ×

[

1
2 , 1

]

is constant as a function of t. That the link-
ing flow is nonsingular will follow from the analogue of the conditions given in [D1,
§3] for the nonsingularity of the radial flow. These will be given in Part II [DG2],
when we use the linking flow to establish geometric properties of the configuration.

Linking between Regions and between Skeletal Sets. A skeletal linking
structure allows us to introduce the notion of linking of points in different (or
the same) regions and of regions themselves being linked. We say that two points
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x ∈ M̃i and x′ ∈ M̃j are linked if the linking flows satisfy λi(x, 1) = λj(x
′, 1). This

is equivalent to saying that for the values of the linking vector fields Li(x) and
Lj(x

′), x + Li(x) = x′ + Lj(x
′). Then, by linking property L3), the set of points

in M̃i and M̃j which are linked consist of a union of strata of the stratifications Si

and Sj . Furthermore, if the linking flows on strata from Si k ⊂ M̃i and Sj k′ ⊂ M̃j

yield the same stratum W ⊂M0, then we refer to the strata as being linked via the
linking stratum W . Then, µi j = λj(·, 1)−1 ◦ λi(·, 1) defines a diffeomorphic linking
correspondence between Si k and Sj k′ .

In Part II [DG2] we will introduce a collection of regions which capture geomet-
rically the linking relations between the different regions. For now we concentrate
on understanding the types of linking that can occur. There are several possible
different kinds of linking. More than two points may be linked at a given point in
M0. Of these more than one may be from the same region. If all of the points are
from a single region, then we call the linking self-linking, which occurs at inden-
tations of regions. If there is a mixture of self-linking and linking involving other
regions then we refer to the linking as partial linking, see Figure 11.

. .

.

.

..
.

i)

ii)

iii)

iv)

v)

Figure 11. Types of linking for multi-region configuration in R
2:

The numbers correspond to the generic Blum linking types listed
in §4. Also, i) and ii) illustrate linking between two objects; iii)
and v) self-linking; and iv) partial linking.

Remark 3.4. If Ωi and Ωj share a common boundary region, then certain strata
in Mi and Mj are linked via points in this boundary region, and for those x ∈Mi,
ℓi(x) = ri(x); see Figure 10.

We next consider in more detail the bounded case.

Skeletal Linking Structures in the Bounded Case. For the bounded case we
suppose that the configuration lies in the interior of a “bounding region”Ω̃ so that
the boundary ∂Ω̃ is transverse to: i) the strata of the external medial axis M0,
ii) the extension of the radial lines from M∞, and iii) the linking line segments.

If the boundary ∂Ω̃ has singular points, then for ii) and iii) by the lines being

transverse to ∂Ω̃, we mean that at a singular point, the line is transverse to the
limits of tangent spaces from the smooth points of ∂Ω̃. For any convex region Ω̃
with piecewise smooth boundary, the limiting tangent planes of ∂Ω̃ are supporting
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hyperplanes for Ω̃. Hence any line in the tangent plane lies outside int (Ω̃). Thus,
the radial lines from regions in the configuration will always meet the boundary
transversely.

We can alter the linking vector field either by truncating it where it meets the
boundary ∂Ω̃ or defining it on M∞ and then refining the stratification so that on
appropriate strata the linking vector field ends at ∂Ω̃. It is now defined on all of
Mi for the individual regions Ωi. Because we are either reducing ℓi, or defining Li

on Mi∞, the linking flow is still nonsingular.
Thus, we have compact versions of the regions defined for the unbounded case.

There are a number of different possibilities for such bounding regions.

(a) (b)

Figure 12. a) Bounding box with curved corners containing
a configuration of three regions and b) (a priori given) intrinsic
bounding region for the same configuration. The linking structure
is either extended to the boundary (in the region bounded by the
darker lines on the boundary for Mi∞) or truncated at the bound-
ary.

Possibilities for a Bounding Region Ω̃:

1) Bounding Box or Bounding Convex Region: The box requires a center and
directions and sizes for the edges of the box. For this, we would need to
first normalize the center and directions for the sides of the box and then
normalize the sizes of the edges either using a fixed size or one based on
feature sizes of the configuration (see e.g. Figure 12 (a)).

2) Convex Hull: The smallest convex region which contains a configuration is
the convex hull of the configuration. For a generic configuration, the convex
hull consists of the regions Bi∞ together with the truncated envelope of the
family of degenerate supporting hyperplanes which meet the configuration
with a degenerate tangency or at multiple points. a) of Figure 17 in § 4,
which is a configuration in R

2, the envelope consists of line segments joining
the doubly tangent points corresponding to the points in the spherical axis
(b) of Figure 17. In R

3, the envelope consists of a triangular portion of
a triply tangent plane, with line segments joining pairs of points with a
bitangent supporting plane, and a decreasing family of segments ending at
a degenerate point.

3) Intrinsic Bounding Region: If the configuration is naturally contained in

an (a priori given) intrinsic region, which is modeled by Ω̃, then provided
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that the extensions of the radial lines intersect ∂Ω̃ transversely, then we
can modify the linking structure as in the convex case to have it defined on
all of the Mi, and terminating at ∂Ω̃, if linking has not already occurred
(see e.g. Figure 12 (b)).

4) Threshold for Linking: The external region can be bounded by placing
a threshold τ on the ℓi so that the Li remain in a bounded region. This
can be done in two different ways. An absolute threshold restricts the ex-
ternal regions to those arising from linking vector fields with ℓi ≤ τ ; and
a truncated threshold restricts to a bounded region formed by replacing ℓi
by ℓ′i = min{ℓi, τ}. For the first type, only part of the region would have
an external linking neighborhood; while in the second, the entire region
would. As for the convex case, since we are replacing ℓi by smaller values,
the linking flow will remain nonsingular. We obtain modified versions of
the regions lying in a bounded region.

4. Blum Medial Linking Structure for a Generic Multi-Region

Configuration

In this section we consider two types of linking structures extending the Blum
medial axes of the individual objects (i.e. regions). To do so we give a number of
results. These include: giving the generic structure of the Blum medial axis for a
region with singular boundary allowing corners and edges (in R

3); introducing the
“spherical axis”for the configuration, which plays the analogous role for directions
as the medial axis plays for distances; and giving the generic properties for the “full
Blum medial linking structure”for a general configuration, and its special form in
the case of a configuration of disjoint regions with smooth boundaries.

Blum Medial Axis for a Single Region with Generic Singular Boundary.
For a single region we will extend the classification of the generic local structure
of the Blum medial axis for regions with smooth boundaries in R

2 and R
3 due

to Yomdin [Y], Mather [M], and Giblin-Kimia [GK] (see also [P] and [PS]). For
R

2 the singular points are either Y -branch points where 3 smooth curves meet
non-tangentially at a point, or end points of a smooth curve. For R

3 the singular
points are either edge points (A3), fin points (A1A3), Y -branch curve points (A3

1),
or 6-junction points (A4

1), where six surface segments meet at a point along four
Y -branch curves. These are illustrated in Figure 13. The notation A1A3 or Ak

1

denotes the singular behavior of the “distance to the boundary”function at the
points on the boundary associated to the indicated points on the medial axis.

a) edge b) Y-branching c) fin creation point d) "6-junction"

Figure 13. Generic local medial axis structures in R
3: a) A3; b)

A3
1; c) A1A3; and d) A4

1.
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Stratification of the Boundary.
The associated points on the boundary form a stratification of the boundary

classified by the types of singular points. The boundary classification is shown in
[DG, Thm 4.4] to have the generic forms given in Figure 14.

4
1A 1A3A

3
1A A31A3A

Figure 14. Generic local stratification of the boundary for a
region in R

3 in terms of the type on the medial axis corresponding
to Figure 13: A3 and A3

1 are the dimension 1 strata (corresponding
to a) and b)), while the other three are dimension 0. The last two
represent A1A3 type from the locations of the A3 point and the
A1 point.

Stratification of the Blum Medial Axis at Singular Boundary Points.
Unlike the case of a region with smooth boundary, the Blum medial axis of a

region with singular boundary may extend up to the singular portion. However, in
the case of singular points which are either corners or edges (in R

3) we can give a
precise characterization of the Blum medial axis near these points.

Definition 4.1. The edge-corner normal form for the Blum medial axis of an edge
or corner point x in R

2 or R
3 is the image via a smooth diffeomorphism, sending

the origin to x, of one of the models given in Figure 15. In R
2, the model for the

medial axis is given for the corner model by the set of points (x, y) with x = y ≥ 0.
In R

3, the models are given by either: the set of points (x, y, z) with x = y ≥ 0
for the edge model, or by the set of points (x, y, z) with x, y, z ≥ 0 and one of
x = y ≥ 0, x = z ≥ 0, or y = z ≥ 0.

a) b) c)

Figure 15. In R
2, a) normal form for the Blum medial axis at a

corner point on the boundary. In R
3, b), resp. c) are normal forms

for edge points, resp. corner points. The darker shaded regions
represent the Blum medial axis.

We give the following strengthened form for the structure of the Blum medial
axis allowing singular points, see [DG, Thm 4.4]

Theorem 4.2 (Generic Properties of the Blum Medial Axis). For a generic region
Ω in R

2 or R
3 with singular boundary allowing corners and edges (for R

3), the
Blum medial axis M has the following properties:
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i) it has the same local properties in the interior of the region int (Ω) as given
above for smooth regions (including the local singular structure and proper-
ties of the radial vector fields as illustrated for 3D in Figure 13);

ii) the corresponding stratifications of the boundary lie in the smooth strata
(i.e. they miss the edges and corners) and are the same as for the smooth
case; and

iii) the closure of the Blum medial axis in the boundary consists of the singu-
lar points of the boundary; at these points, the Blum medial axis has the
corresponding edge-corner normal form in Definition 4.1.

Remark 4.3. The Blum medial structure M for a region with boundary and
corners contains the singular points of the boundary in its closure, and at such
points the radial vector field U = 0. Hence, (M,U) does not define a skeletal
structure in the strict sense. However, it can still be used, just as with skeletal
structures, to compute the local, relative, and global geometry and topology of
both the region and its boundary. Hence, we can view it as a “relaxed skeletal
structure,”where “relaxed”means that M includes the singular boundary points
and U = 0 on these points. Alternatively, we can modify the Blum medial axis
near the singular points of the boundary so it becomes a skeletal structure, see §5.

Spherical Axis of a Configuration. The generic local properties of the Blum
medial axis for individual regions described in the last section will also apply to
the external linking axis for the Blum linking structure which will be intrinsic for a
configuration. There are still two remaining contributions to the linking structure.
The one involves identifying the types of linking which may occur generically be-
tween different regions. This leads to part of the refinement of the stratification of
the Blum medial axes of the individual regions and the external linking axis. The
remaining contribution concerns the portions of the Blum medial axes, denote M∞,
and their corresponding boundary points B∞ where no linking occurs. These are
points on the boundaries where no other regions (or different portions of the same
region) would be visible. We characterize the boundary of B∞ using the “spherical
axis”and the associated “spherical structure”, which we now proceed to define.

Along with the Blum medial axis, we introduce its analog for directions in place
of distances. Directions are given by vectors v ∈ Sn, where Sn is the unit sphere
in R

n+1. Given such a direction and either a region Ω or a configuration Ω, the
supporting hyperplane in the direction v is given by an equation x ·v = c, where all
points x of Ω or Ω satisfy x · v ≤ c (i.e. it is contained in the half-space defined by
x · v ≤ c), with equality at one or more points. The intersection of the supporting
hyperplanes defines the convex hull of the region or configuration.

We define the spherical axis Z ⊂ Sn of Ω, or the configuration Ω, to consist of
directions v ∈ Sn for which the supporting hyperplanes x · v = c for the convex
hull of Ω or Ω have two or more tangencies with B or a degenerate tangency, see
e.g. Figure 16. If we let τ : B × Sn → R be defined by τ(x,v) = x · v, then τ is
the family of “height functions” on B. The spherical axis is the set of v ∈ Sn at
which the absolute maximum of τ(·, v) occurs at multiple points or is a degenerate
maximum (this is the “Maxwell set”of −τ ). Then, similar methods to those used
by Mather can be applied to determine the generic structure of Z (see [DG, Thm
4.6]). In the special cases of R

2 and R
3 they give the following.
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Theorem 4.4 (Generic Properties of the Spherical Axis). For generic regions (with
smooth boundaries) or generic configurations, the spherical axis has the following
local structure. In R

2, Z consists of a discrete set of points where supporting lines
have two tangent points (see e.g. Figure 17). In R

3, it consists of a collection of
branched curves with endpoints. At smooth points of the curves there is a double
tangency of the supporting plane. The branching occurs at Y -branch points which
correspond to triple tangencies. The end points correspond to points where the
height function τ has an A3 singularity. These are illustrated in Figure 16.

a) b) c)

Figure 16. Types of tangencies corresponding to points in the
spherical axis. The tangent planes shown are to points of multiple
tangencies (except for the single A3 point at the left tangency in
c).

Ω
1

Ω
2

Ω
3

Ω
4

Ω
1

Ω
1

Ω
4

Ω
4 Ω

3

Ω
2

a) b) c)

Figure 17. a) Configuration of four regions in R
2 with the bi-

tangent supporting lines, and b) the corresponding spherical axis,
which consists of the points on S1 corresponding to bitangent lines
in a). The regions between points represent subregions of B of
unlinked points in B∞. If the same region Ωi is indicated on both
sides of a radial line, then in Bi is a region involving self-linking.
The third figure in c) is a region in R

3 with the corresponding
spherical axis represented as a branched curve in the surrounding
2-sphere.
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Spherical Structure for a Configuration. Just as for the Blum medial axis, we may
associate to the spherical axis Z, both a height function h and a multivalued vector
field V . To do this we need to initialize the origin. Then, the height for a point u
on the spherical axis, which is a unit vector, defined for a point x ∈ B is just the
dot product x ·u. Furthermore, there may be multiple points associated to u, all of
which lie in the supporting hyperplane H defined by x ·u = h(u), for the maximum
value h = h(u) for B. For each point xi ∈ H ∩ B, there is a vector V = xi − hu
orthogonal to the line spanned by u. This defines a multivalued vector field V .

Definition 4.5. The full spherical structure for the spherical axis of the multi-
region configuration is the triple (Z, h, V ), consisting of the spherical axis Z, the
height function h, and the multivalued vector field V . This depends upon the choice
of an origin on which all height functions are 0.

From the spherical structure, we can reconstruct the boundary of B∞ by x =
V (u) + h(u)u for u ∈ Z and the multiple values of V at u. Here x denotes a
collection of points corresponding to the values of V .

Then, the regions in int (B∞) are the regions in the complement of the boundary
of B∞ which have supporting hyperplanes for at least one point in one of the
corresponding complementary regions to the spherical axis. If we have in addition
the height function for the configuration defined on all of Sn, then we can construct
the supporting hyperplanes for all u ∈ Sn, and the envelope of these hyperplanes
yields B∞.

Blum Medial Linking Structure. We now consider the analogous Blum medial
linking structure for a generic multi-region configuration. First, we note that if the
configuration has regions with boundaries and corners, then the Blum medial axes
of the individual regions will not define skeletal structures. This is because the Blum
medial axis will actually meet the boundary at the edges and corners. However, in
the case of disjoint regions {Ωi} in R

n+1 with smooth generic boundaries (which
do not intersect on their boundaries) there is a natural Blum version of a linking
structure, which we introduce.

Definition 4.6. Given a multi-region configuration of disjoint regions Ω = {Ωi}
in R

n+1, for i = 1, . . . ,m, with smooth generic boundaries (which do not intersect
on their boundaries), a Blum medial linking structure is a skeletal linking structure
for which:

B1) theMi are the Blum medial axes of the regions Ωi with Ui the corresponding
radial vector fields;

B2) the linking axis M0 is the Blum medial axis of the exterior region Ω0 (and
we refer to it as the medial linking axis); and

B3) the Mi∞ are the points in M̃i corresponding to points on Bi for which
a height function has an absolute maximum (or minimum for the height
function for the opposite direction).

Remark 4.7. It follows from B2) that if x ∈ Mi and x′ ∈ Mj are linked, the
corresponding values of the radial and linking functions satisfy ℓi(x) − ri(x) =
ℓj(x

′) − rj(x
′).



MEDIAL/SKELETAL LINKING STRUCTURES 21

Generic Linking Properties.
We consider a generic configuration of regions {Ωi} with Bi the boundary of Ωi,

and Mi the Blum medial axis of Ωi. If each region is generic, then by Theorem 4.2
the Blum medial axis of each region has generic local structure. For 3D, the points
on the boundary are of types A3, A

3
1, A

4
1, A3A1 and A1A3, as shown in Figure

14, along with the remaining points of type A2
1 corresponding to smooth points on

the medial axis. For 2D, there are only isolated points of type A3, corresponding
to end points of the medial axis and A3

1 points corresponding to Y -branch points,
with the remaining points of type A2

1.

u
1
.

Figure 18. Generic linking involves the simultaneous role played
by points xi ∈ Bi and their Blum features via the distance function
to a point ui of the Blum medial axis Mi of the interior region Ωi

and that for a point u0 in the external linking medial axis .

A point of Bi may simultaneously have a role as both a point on the boundary
of Ωi and as a point on the boundary of the external region, see Figure 18. As
such it has two distinct Blum descriptions, and hence simultaneously belongs to
strata on the boundaries corresponding to given Blum behavior exhibited for the
individual regions and for the external region. Generic linking between regions for a
configuration satisfies special genericity properties which is explained by how these
strata intersect.

We consider a collection of smooth boundary points S = {x1, . . . , xk} with xi ∈
Bji

associated to points ui on the medial axes Mji
. Suppose the ui are linked at

the point u0 on the external medial axis M0. In the generic case, this means k ≤ 3
for R

2 and k ≤ 4 for R
3. We use the notation Aαi

to denote the Blum type of xi

for the point ui for the individual region Ωji
and denote the corresponding strata of

the boundary consisting of points of this type by Σαi

Bji
. Likewise, we let Aβ denote

the Blum type for the point u0 on the external medial axis, and denote the strata

in the external medial axis by Σ
(β)
M0

and the corresponding strata on the boundary

by Σβ
B
. Then, the Blum linking type is denoted by (Aβ : Aαi1

, . . . , Aαik
).

Definition 4.8. The set of points S = {x1, . . . , xk} as above exhibits generic Blum
linking of type (Aβ : Aαi1

, . . . , Aαik
) if:

i) the strata Σ
(β)
B

⊂ B and Σ
(αi)
Bji

⊂ Bji
intersect transversely in Bji

; and
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ii) the images in M0 of the strata Σ
(β)
B

∩Σ
(αi)
Bji

under the linking flow intersect

transversely in the stratum Σ
(β)
M0

(see e.g. Figure 19).

For example, generic linking in R
2 means that zero-dimensional (isolated point)

strata in one region can only be linked to points in the A2
1 strata in another.

Also, in R
3 a one-dimensional stratum can intersect other one-dimensional stratum

(transversely in a single point) in a boundary Bi and this can then also be linked
to A2

1 strata in another boundary as in Figure 19.

Example 4.9 (Generic Linking in R
2). There are only five types of generic linking

for configurations in R
2 (see Figure 11):

i) (A2
1 : A2

1, A
2
1): linking smooth points of two medial axes at a smooth point

of the external medial axis, forming one-dimensional strata;
ii) (A2

1 : A3, A
2
1): linking an end point of one medial axis with a smooth point

of another at an isolated smooth point of the external medial axis, forming
a zero-dimensional stratum;

iii) (A2
1 : A3

1, A
2
1): linking a Y -branch point of one medial axis with a smooth

point of another at an isolated smooth point of the external medial axis,
forming a zero-dimensional stratum;

iv) (A3
1 : A2

1, A
2
1, A

2
1): linking smooth points of three medial axes at a Y branch

point of the external medial axis, forming a zero-dimensional stratum;
v) (A3 : A2

1): a single smooth point of a medial axis is self-linked at an end
point of the external medial axis.

We note that all five types can occur for self-linking; but only the first four can
occur for linking between distinct regions; and partial linking can only occur via
iv).

By these being the only five generically occurring linking types, we mean that
any other possibility, such as e.g. two end points of different regions being linked,
may be arranged for a specially constructed configuration; however, almost all slight
perturbations of this special configuration will destroy this special linking feature
and only involve the five basic types.

For 3D, the situation becomes more complicated and there are seventeen generic
linking types listed in Table 1 in §6. However, as explained in §7, by replacing the
Blum linking structure with a simpler skeletal linking structure, we can significantly
reduce the number of linking types.

Remark 4.10. For a general multi-region configuration, we can substitute in place
of Ω0 a region Ωi which has multiple adjoining regions (including possibly the
complement Ω0) and the definition of “generic linking”of the adjoining regions
relative to Ωi has the same form as in Definition 4.8. Generically they have the
same properties as for Ω0.

Generic Structure for B∞ and M∞.
For a region Ωi of a configuration, the points in Mi∞ (and Bi∞) are not involved

in linking; however, they do involve points which have a type Aα based on the
internal medial structure of Ωi. By the generic structure of Mi∞ and Bi∞ we are
interested in both the generic properties of the stratifications of Bi∞ and Mi∞

resulting from the spherical axis and their relation with the strata Σα
Bi

.
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(a)

(a)

(a)

(b)

(b)

(a)

(a)

(c)

(a)

(a)

(a)

(a)

(c)

(c)

(c)

(c)

Figure 19. Examples of linking types involving three objects
with a portion of the linking medial axis shown. The points (a)
are of linking type (A2

1 : A3, A
2
1); points (b) illustrate linking of

type (A2
1 : A3, A3), and (c) of type (A3

1 : A3, A
2
1, A

2
1). In the

external linking medial axis is illustrated via the dark curves the
1-dimensional strata of type (A2

1 : A3, A
2
1) with isolated points

either of types (A2
1 : A3, A3) where the 1-dimensional strata cross

or (A3
1 : A3, A

2
1) where the (A2

1 : A3, A
2
1) curve crosses the Y -branch

curve of the external linking medial axis.

The interior points of Bi∞ are those points where the supporting hyperplane
meets the configuration at a single nondegenerate tangency. In addition, the bound-

ary of Bi∞ consists of strata Σ
(α)
∞ corresponding to the strata Σ

(α)
Z

of the spherical

axis Z and are of the same dimensions. The strata Σ
(α)
∞ lie in the smooth strata of

the Bi.

Definition 4.11. By M∞ and B∞ having generic structure we mean:

1) the spherical axis of the configuration is generic and each Bi∞ has strata
with the resulting generic local structure given by Theorem 4.4;

2) the strata of this stratification of Bi∞ intersect tranversally the strata Σ
(β)
Bi

for the Blum medial axis of Ωi; and
3) the strata of Mi∞ are the images in M̃i of the transverse intersections

Σ
(α)
∞ ∩ Σ

(β)
Bi

.

Examples of the generic local structure for the boundary strata of M∞ for a
multi-region configuration in R

3 are shown in Figure 16: a) of type A2
1, b) of type

A3
1, and c) of type A3. The darker curves (including the darker dashed curves)

denote the boundary strata bounding regions of M∞ (consisting of points whose
outward pointing normals point away from the other regions).
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Existence of a Blum Medial Linking Structure. Before stating the general
form of a full Blum linking structure for a general configuration, we first give a
special case where the configuration Ω consists of disjoint regions with smooth
boundaries. Then, the existence of Blum medial linking structures is guaranteed
by the following, which in addition ensures generic linking (see [Ga, Thms 3.4.3
and 3.4.4] and [DG, Thm 4.12]).

Theorem 4.12 (Existence of Blum Medial Linking Structure). For a generic con-
figuration Ω = {Ωi} in R

2 or R
3 consisting of disjoint regions with smooth bound-

aries (i.e. they do not intersect on their boundaries), and with Ω contained in the

interior of a given compact region Ω̃,

(1) the configuration has a Blum medial linking structure such that each Mi

(including M0) has generic local properties given by Theorem 4.2;
(2) the linking structure exhibits generic linking as in Definition 4.8;
(3) M∞ and B∞ have generic structure as given in Definition 4.11; and

(4) in the case that Ω̃ is convex, the properties for a linking structure in the
bounded case hold.

This result is a special case of the following general result for a general configu-
ration allowing adjoined regions in [DG, Thm 4.13].

Theorem 4.13 (Full Blum Linking Structures). A generic multi-region configura-

tion Ω = {Ωi} in R
2 or R

3 contained in the interior of a compact region Ω̃ has the
following generic properties:

i) each Ωi has a Blum medial axis Mi exhibiting the generic local properties
at interior points of Ωi given by Theorem 4.12;

ii) the external region in Ω̃ has a medial linking axis M0 which exhibits the
generic local Blum properties;

iii) the local structure of the Blum axes Mi (including i = 0) near a singu-
lar boundary point has the local generic edge-corner normal form given by
Definition 4.1;

iv) at a smooth boundary point of a region Ωi of type Qk, k = 2, 3, the strata

of Qk-points transversally intersects the strata of Blum type points Σ
(α)
Bi

;
v) generic linking occurs between the smooth points of the regions and no

linking occurs at edge-corner points; and
vi) Bi∞ is contained in the smooth strata of the Bi, and Bi∞ and Mi∞ exhibit

the generic properties given in Definition 4.11.

Note: Property v) holds as well for generic linking between adjoining regions of
a given region Ωi relative to the region Ωi.

5. Modifying the Full Blum Medial Structure to a Skeletal Linking

Structure

We know by Theorem 4.13 that a generic multi-region configuration has a Blum
medial structure. If the regions are disjoint with smooth boundaries, then the
Blum linking structure is a skeletal linking structure. However, if the configuration
contains regions which adjoin, then the Blum linking structure does not satisfy all
of the conditions for being a skeletal linking structure. Specifically the individual
Blum medial axes of both the regions and the complement will extend to the singular
points of the boundaries.
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There are two perspectives on this. On the one hand, as mentioned in Remark
4.3, we may view this as a “relaxed form of a skeletal linking structure.”We shall see
that from this structure we still obtain all of the local, relative, and global geometry
of the individual regions and the positional geometry of the configuration. However,
if we consider the stability and deformation properties, such a structure does not
behave well.

We describe two approaches to modifying the full Blum linking structure to
obtain a skeletal linking structure. One approach is when the configuration with
adjoined regions can be viewed as a deformation of a configuration with disjoint
regions. The second is to modify the full Blum linking structure by a process of
“smoothing the corners”of the regions. We describe each of these.

Example of Evolving Skeletal Linking Structure for Simple Generic Tran-
sition. We illustrate the method for a simple generic transition under which two
initially disjoint regions Ωi 0, i = 1, 2, undergo a deformation Ωi t to become ad-
joined at t = t0 and form a common boundary region Zt for t > t0. This is
illustrated in Figure 20.

a) c)b)

Ω'1t0

Ω'2t 0
Ω'2 0

Ω'1 0

Z t
Ω'2t

Ω'1t

Figure 20. The stages for a simple generic transition of two
evolving regions Ω′

i t becoming adjoined: a) disjoint regions, b)
simple tangency at t = t0, and c) regions adjoined along Zt at
t > t0.

However, this causes a transition in the full Blum medial linking structure as in
changing from a) to b) in Figure 21. There is a discontinuous change in the Blum
medial axis somewhat analogous to the introduction of a C1 bump in the boundary
of a region which forces the Blum medial axis to introduce a new branch.

An alternate approach is to deform the Blum medial linking structure of the
regions before the transition to a skeletal linking structure as the transition occurs
and continues for the adjoined regions to evolve from a) to c) in Figure 21. This
is achieved by keeping the skeletal axes for each region but altering the lengths of
both the radial vectors so they extend to the common boundary and altering the
linking vectors to the external linking axis as shown.

This gives a family of skeletal linking structures for the varying configuration
Ω′

t = {Ω1 t,Ω2 t}, which evolve continuously (and stratawise differentiably on the
added strata Si t), see Figure 21.

Remark 5.1. This example illustrates one significant advantage of skeletal link-
ing structures over the full Blum linking structure for general multi-object con-
figurations; namely, certain changes in configuration type can be incorporated as
continuous variation in the skeletal linking structure.
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a) c)b)

Z t

M 2t

Ω'1t

Ω'2t

Ω'1 0

Ω'2 0

Ω'1t

Ω'2t

M 1 0

M 2 0

M 1t
M'1t

M'2t

M 0 M 0

Figure 21. Comparison of generic bifurcation of the full Blum
linking structure versus evolution of the retracted skeletal linking
structure for two evolving regions Ω′

i t becoming generically ad-
joined as in Figure 20. Full Blum linking structure bifurcates by
adding branches from a) unjoined regions to b) after becoming ad-
joined. By contrast, the retracted skeletal linking structure evolves
while retaining the structure of the skeletal sets, from a) unjoined
regions to c) after being adjoined.

Modifying the Full Blum Linking Structure via Smoothing. A second ap-
proach for a configuration with adjoining regions is to modify the full Blum linking
structure to a skeletal linking structure. One way to accomplish this is by “smooth-
ing of the corners of the regions”in a small neighborhood of the edge/corner set as
in Figure 22. The goal is to modify the regions Ωi in a small neighborhood W of
the edge corner points so that the smooth region boundaries are smooth, interior
to Ωi and agree with the original boundaries outside of W . This is done in such a
way that the radial vector field of the Blum medial axes of the smooth regions can
be extended to be transverse to the original boundary and can be extended to meet
the external medial axis transversely. These extended vectors are then the linking
vectors for a skeletal structure. The details of this can be found in [DG, Chap. 5].

a) b)

M 1

M 2

Ω1

2Ω M 0

Ω1

2Ω

M 1

M 2

M 0

Figure 22. An example of a smoothing of a configuration with
adjoining regions in the neighborhood of a corner point: a) Blum
linking structure and b) Smoothing and resulting modified skeletal
linking structure.
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6. Classification of Linking Types for Blum Medial Linking

Structures in R
3

For a generic configuration Ω in R
3, the Blum medial linking structure exhibits

generic linking properties given in Table 1. We first briefly explain the features of
the table. Dimension refers to the dimension in R

3 of the strata where the given
linking type occurs. There are three types of linking: 1) linking between points
on distinct medial axes; 2) “partial linking” involving more than one point from
one medial axis and point(s) from another; and 3) “self-linking” where linking is
between points from a single medial axis. “Pure linking type” refers to cases only
occurring for self linking. The A2

1 and A1A3 linking can occur for either linking or
self-linking; while A3

1 and A4
1 linking can occur for any of the three linking types.

Table 1: Classification of Linking Types for Blum Medial Linking
Structures in R

3

Linking Type Dimension Description of Linking
A2

1 Linking

i) (A2
1 : A2

1, A
2
1) 2 between 2 smooth points

ii) (A2
1 : A3

1, A
2
1) 1 between a smooth point

and a Y-junction point

iii) (A2
1 : A3, A

2
1) 1 between a smooth point

and an edge point

iv) (A2
1 : A3A1, A

2
1) 0 between a fin point

and a smooth point

v) (A2
1 : A1A3, A

2
1) 0 between a smooth point

associated to a fin point and
another smooth point

vi) (A2
1 : A4

1, A
2
1) 0 between a smooth point

and a 6-junction point

vii) (A2
1 : A3

1, A
3
1) 0 between 2 Y-junction points

viii) (A2
1 : A3, A3) 0 between 2 edge points

ix) (A2
1 : A3

1, A3) 0 between a Y-junction point
and an edge point

A3
1, A

4
1 and A1A3 Linking

x) (A3
1 : A2

1, A
2
1, A

2
1) 1 between 3 smooth points

xi) (A3
1 : A3

1, A
2
1, A

2
1) 0 between 2 smooth points

and a Y-junction point

xii) (A3
1 : A3, A

2
1, A

2
1) 0 between 2 smooth points

and an edge point

xiii) (A4
1 : A2

1, A
2
1, A

2
1, A

2
1) 0 between 4 smooth points
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Table 1: Classification of Linking Types for Blum Medial Linking
Structures in R

3

Linking Type Dimension Description of Linking
xiv) (A1A3 : A2

1, A
2
1) 0 A1A3 linking between 2

smooth points

Pure Self-Linking

xv) (A3 : A2
1) 1 edge-type self-linking with

a smooth point

xvi) (A3 : A3
1) 0 edge-type self-linking with

a Y-junction point

xvii) (A3 : A3) 0 edge-type self-linking with
an edge point

7. Simplifying the Blum Linking Structure for Medical Imaging

For modeling configurations in 2D and 3D medical images, the strategy we pro-
pose builds upon that used in modeling single objects using M-reps and S-reps as
developed by Pizer and coworkers at UNC MIDAG. The Blum medial axis is re-
placed by a simpler skeletal structure where the skeletal set (also called the medial
set) is replaced by a surface with boundary diffeomorphic to a 2-dimensional disk,
which is modeled by a rectangular grid with a multi-valued vector field at the ver-
tices of the grid. Then, the grid together with vectors is the template which is fitted
to a specific object in each of a training set of medical images. The size of the grid
is experimentally chosen based on the object. The fitting involves an optimization
process based on several criteria involving nonsingularity of the structure, regularity
of the interpolated vector fields, nonsingularity of the constructed object boundary,
and closeness of fit to an expert segmentation of the object. These criteria use
in several ways the underlying mathematics of skeletal structures to numerically
measure the criterion and contribute to the interpolation technique.

The fitting of the templates provides a discrete set of data for each object in
the training set; but the data are points on a product manifold. A form of non-
linear PCA is applied to identify the most significant feature directions. Then an
iterative process is applied to further refine the fits and ultimately to yield a fit-
ting process which is applied to new images using the preceding criteria and the
statistical priors. This method provides extremely high quality fit yielding high
segmentation accuracy for a number of different cases that have been studied, and
led to commercial software for imaging the male pelvic region.

In several cases mentioned earlier where several objects in the same image are
considered, additional user chosen positional information is attached which im-
proves the positioning of the templates to the individual objects. What the work
here provides for a configuration of objects is an analysis of how the entire collection
can be simultaneously modeled beginning with a Blum linking structure. Because
of several weak features and disadvantages of the Blum medial axis, this linking
structure would be replaced by a more general but simplified skeletal linking struc-
ture. This linking structure would still restrict to give an S-rep representation for
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each object. By using skeletal sets without singular points (except the edge points),
the number of linking types are reduced from 17 to 9. Moreover, if the external
linking axis can be simplified by, for example, avoiding self-linking, then this can
be further reduce to 7 types in Table 1: i), iii), viii), x), xii), xiii), and xiv). These
concern the singular structure of the external linking axis and the relation of the
edges of the skeletal sets with each other and the singular points of the linking axis.
The added data for a fitted linking structure, beyond that for the S-rep data for
each object, would include the values of the linking functions at the vertex points,
and the points on the skeletal sets corresponding to the linking types. The linking
function values are easily included in the data, while for the linking types more in-
vestigation is needed to effectively include these so the statistical analysis includes
all information.

Right now this has begun on a region in the neck which includes the three objects
illustrated in Figure 1 b). There is still needed the detailed fitting for a training
set with experimental decisions made on the size of the grids for the S-reps to also
incorporate the extra data. This will involve the use of additional mathematical
structure built upon that for skeletal structures, which is explained in the related
paper [DG2]. Then, the process will proceed to arrive at a coherent template for
the entire configuration and a specific optimization procedure for the fitting.
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