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INTRODUCTION

The notion of free divisors first appeared in investigations of discriminants of
versal unfoldings of isolated hypersurface singularities. They appeared implicitly
in Arnol’d’s work on wave front evolution via functions on discriminants of stable
Ay, singularities [A], and they were formally defined and investigated by Saito [Sa].
Since then, the notion of a free divisor has played a fundamental role for understand-
ing the structure of nonisolated singularities such as discriminants, bifurcation sets,
hyperplane arrangements, etc. As just one example, we mention that the results of
Arnol’d [A3] and Brieskorn [B] on the factorization of the Poincaré polynomial for
the homology of complement of a reflection hyperplane arrangement were shown
by Terao [Tol] to follow from the freeness of the arrangement. At the same time,
the richness of the class of free divisors has also become increasingly evident, as
researchers have established that a number of natural constructions yield free divi-
sors (e.g. Saito [Sa], Looijenga [L], Terao [Tol] [To2], Bruce [Br], Van Straten [VS],
Mond [Mo3] [MVS], Goryunov [Go2], Grandjean [Gr] and this author [D6] (and see
[D6] for other references).

Moreover, V, 0 being a free divisor allows us to investigate the vanishing topology
(of singular Milnor fibers) of nonisolated singularities arising as nonlinear sections
[DM], [D3], [D4]. This includes the higher multiplicities of V itself (which includes
the topology of the complex link).

In the first part of this paper [D6], we considered how a free divisor V,0 C C?,0
passes on its freeness to divisors arising as Ky—discriminants Dy (F') for versal
unfoldings F' of nonlinear sections fy : C*,0 — CP, 0 of V. This general construction
encompasses a number of the specific constructions mentioned above. For Dy (F)
to be a free divisor, it is sufficient that V' generically has “Morse—type singularities”
in dimension n where n < hn(V'), the holonomic codimension of V. This means that
there are sections through points of V' which exhibit many of the same properties
as classical Morse singularities (appropriately understood). There are many basic
examples which satisfy this condition. They include bifurcation sets for a certain
well-defined class of finitely A-determined complete intersection germs, smoothings
of certain classes of isolated complete intersection singularities and space curve
singularities, discriminants for generic hyperplane arrangements, etc.

Partially supported by a grant from the National Science Foundation.
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In this continuation of part I [D6] we address questions concerning the structure
of discriminants and their vanishing topology for many different groups of equiv-
alences involving nonisolated singularities. These include: nonisolated complete
intersections defined as nonlinear sections of fixed complete intersections, singular-
ities of functions, mappings, or divisors on nonisolated complete intersections, or
equivalence of functions and mappings preserving a hypersurface V in the source
(which can be viewed as boundary singularities for the singular boundary V in the
sense of Arnol’d [A2], Siersma [Si], Lyashko [Ly], Bruce and Giblin [BG1] [BG2],
and Tari [Ta], or singularities at infinity with V' denoting the divisor at infinity).

We address three questions concerning discriminants for such equivalences.

(1) Is there a general criterion ensuring that for an equivalence group G, the
discriminants for G—versal unfoldings are free divisors?

(2) If this criterion fails, is there a weaker substitute for the notion of free
divisor which still generally applies?

(3) With this weaker notion, is it still possible to deduce results about the
vanishing topology of nonlinear sections of such divisors?

Our goal in this paper is to give answers to these questions. First we give a
criterion for freeness of discriminants which is described by the motto

Cohen—Macaulay of codim 1 + Genericity of Morse Type Singularities
= Freeness of Discriminants

We consider the class of geometrically defined subgroups G of A or K so the basic
theorems of singularity theory are valid. We introduce the notion of G being Cohen—
Macaulay. The geometric notion of “genericity of Morse—type singularities”implies
a condition of “genericity of G-liftable vector fields”. Then, the above motto is
given form by Theorem 1: G being Cohen-Macaulay with genericity of G-liftable
vector fields implies the freeness of discriminants for G—versal unfoldings.

For the second question, we consider what remains true when either of these con-
ditions fail. For example, for a free divisor V, 0, provided n < hn(V') the group Ky
is Cohen—Macaulay; but there are many examples where genericity of Morse—type
singularities fails (see [D6]). However, in a very well-defined sense, the discrimi-
nants (and bifurcation sets) for these cases “just fail”to be free divisors. We are led
to introduce the weaker notion of a “free* divisor” (pronounced “free star divisor”).
A “free* divisor”structure is defined by a free submodule of vector fields which are
tangent to the discriminant, but define the discriminant with a nonreduced struc-
ture. In this sense, the “*” denotes that the divisor is “free” with an asterisque
indicating the lack of reduced structure.

Such a structure is highly nonunique (there is even a trivial free* divisor struc-
ture, which carries no new useful information). Hence, the importance of a particu-
lar free* divisor structure depends upon: first, its being defined in terms of natural
properties of the divisor, and second the extent to which it can still be used to
obtain useful topological and geometric information about the divisor.

In Theorem 2, we deduce that if G is only Cohen—Macaulay, then discriminants
for G-versal unfoldings are still free* divisors for the module of G-liftable vector
fields. We deduce Theorem 3 that for a free divisor V, even in the absence of
genericity of Morse-type singularities, provided n < hn(V) the Ky—discriminants
of versal unfoldings are always free* divisors for the module of Ky -liftable vector
fields. We conclude (Corollaries 2.17 — 2.19) that for finitely A determined germs
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in the nice dimensions, for complete intersection germs on ICIS, and for “almost
free”nonlinear arrangements, the bifurcation sets are always free* divisors for the
module of liftable vector fields.

These theorems are applied in part IIT of this paper to boundary singularities for
singular boundary V. A standard group G = A, R", K which also preserves V in the
source is denoted yG. The equivalence group y K is Cohen-Macaulay. Surprisingly
whether y/C generically has Morse type singularities depends upon whether V' does
for Ky—equivalence. Hence, Arnol’d [A2] and Lyashko [Ly] show that the simple
boundary singularities of functions have versal unfoldings whose discriminants are
free divisors. Our results show this fails in general; and when it holds it does so
for functions and complete intersection mappings. This leads to the freeness of the
discriminants for .4 stable or v RT—versal germs and v .A-bifurcation sets.

The second way the motto may fail is if the group G is not Cohen—Macaulay. It
may still be possible that G —discriminants may still behave as if G were. We see this
by introducing the notion of a Cohen—Macaulay reduction G* of G (or more briefly
a CM-reduction). We replace the group G by a subgroup G* with better algebraic
properties, but with the same discriminant for versal unfoldings. We prove as the
second parts of Theorems 1 and 2 that if G has such a CM-reduction G*, then the
G—discriminants for versal unfoldings are free* divisors but for the module of G*—
liftable vector fields. Moreover, if in addition “G generically has G*-liftable vector
fields”, then the G—discriminant is a free divisor.

A basic situation where CM-reduction arises involves nonlinear sections of non-
isolated complete intersections. We introduce the notion of “free complete inter-
section” which for nonisolated complete intersections is the analogue of the notion
of free divisor (§5). For example, products of free divisors are free complete in-
tersections. Nonlinear sections of a free complete intersection give the nonisolated
analogue of ICIS. Moreover, complete intersections may possess Morse-type sin-
gularities with the analogous properties as for divisors. However, unexpectedly,
even if a free complete intersection V' generically has Morse—type singularities, the
Ky—discriminants for versal unfoldings of sections of V' need not be free because
generally Ky is not Cohen—Macaulay. We give an explicit example in §3 where this
fails. Hence, the result of Looijenga [L] on the freeness of the discriminant for stable
germs defining an ICIS does not extend to nonisolated complete intersections.

However, for free complete intersections V, 0, we establish (Theorem 4) that pro-
vided n < h(V) (which can be smaller than hn(V)), Ky has a Cohen—Macaulay
reduction Kj,. Thus, by theorem 2, Ky—discriminants are free* divisors for the
module of K3, -liftable vector fields. In the case of an ICIS (corresponding to
V = {0} C C), the K}, and Ky-liftable vector fields agree, and define the dis-
criminant for the versal unfolding with reduced structure, recovering the result of
Looijenga [L]. However, Theorem 1 does not generally apply to this case because for
Morse-type singularities for Ky, vector fields are not Kj,-liftable. We furthermore
show in part III that the question of CM-reduction and genericity of Morse—type
singularities reappear for the relative case of a divisor on a nonisolated complete
intersection.

Lastly, we give an answer to the third question we raised regarding the vanishing
topology of nonlinear sections of free* divisors. We show in §4 that the weaker
properties of free* divisors are still sufficient to give formulas for the singular Milnor
numbers for nonlinear sections (Theorem 5) in terms of codimensions of appropriate
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normal spaces. Except now we must take into account “virtual singularities” arising
from the free* divisor structure. Because of the form for the normal spaces, these
codimensions are also given as Buchsbaum—Rim multiplicities of the normal spaces,
leading to natural questions about whether the formulas can be expressed in terms
of Buchsbaum—Rim multiplicities of the original G—normal spaces.

The author is very grateful to Anne Friihbis—Kriiger for developing a package
for “Singular”[Sg] and for working with him to use it for verifying a basic coun-
terexample, and also to David Mond and the referee for a number of very useful
comments.
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I Discriminants as Free or Free* Divisors and Their Vanishing Topology

1. FREE* DIVISORS

Notation. We recall some of the notation used in §1 of Part I of this paper [D6]. If
(V,0) € CP,0is a germ of a variety, we let I(V') denote the ideal of germs vanishing
on V. We also let 8, denote the module of vector fields on C”,0 and consider the
module of vector fields tangent to V.

Derlog(V) = {( € b, : ((I(V)) € I(V)}.

Then, (following Saito [Sa]) if V,0 is a hypersurface, it is called a Free Divisor
if Derlog(V) is a free O o—module. Its rank is then necessarily p. We further
recall (see [DM]) that H is a good defining equation for V if there is an “Euler-like
vector field”e € Derlog(V') such that e(H) = H. This follows if V is weighted
homogeneous, and H can be chosen weighted homogeneous of non-zero weight.
However, we can always find a good defining equation by replacing V by V x C (see
[DM, §3] and (1.4) below). This causes no changes in the properties; if V' is a free
divisor then so is V x C. Also, by results in [D2], for the equivalence of sections of
germs of varieties, we can replace V by V x C without changing the deformation
theory. Finally if M is a submodule of 6, generated by {(1,...,(-}, we let (M),
be the subspace of T, C? spanned by {Ci(y),---,r(y) }-
We now introduce a weakened form of the notion of free divisor.
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Definition 1.1. For a hypersurface germ V,0 C CP,0, and p' = p+m > p, let
V'=V x C™ C CP'. Then, a free* divisor structure for V defined on CP', consists
of an Og, y—submodule £ C Derlog(V") which satisfies:

(1) Lis a free Ogy g—module of rank p'; and
(2) supp(fp /L) = V'
Although a free* divisor structure for V' is not unique, frequently £ will be a
close approximation to Derlog(V). Hence, we will denote £ by Derlog*(V) and
refer to V,0 as a free* divisor defined by Derlog* (V).

Remark 1.2. This notion is really a “stable property”of V' as the free* divisor
structure exists on V' = V x C™ rather than on V itself. However, as remarked
earlier, we can replace V by V' without changing either the deformation theory
or vanishing topology for nonlinear sections. Furthermore, many cases we consider
involve discriminants and bifurcation sets for versal unfoldings, so we may replace
them by their products with some C™. Hence, in what follows, to reduce notation,
we shall frequently suppose that we have already replaced V' by its product with
the appropriate C™ so that Derlog™ (V) C Derlog(V).

Remark 1.3. Unlike Derlog(V'), Derlog®(V) need not be a Lie algebra of vector
fields. However, frequently V' will denote the discriminant (or bifurcation set) for
a versal unfolding with respect to some geometric subgroup G of A or K [D5].
Then, Derlog*(V) will be the extended tangent space to the group of G-liftable
diffeomorphisms, which is a subgroup of Dy, the diffeomorphisms preserving V.
Hence, Derlog™ (V') will naturally have a Lie algebra structure. It provides V' with
a singular foliation. Thus, when Derlog*(V') does have this additional Lie algebra
structure, we will specifically note it.

(1.4) Properties of Free* Divisors. 1) As for free divisors, we say that h is a good

defining equation for V,0 if h is reduced and there is an Euler-like vector field

e € Derlog*(V) satisfying e(h) = h. By replacing V by V! =V x C and h by
0

hi(z,t) = exp(t) - h, we obtain an Euler-like vector field e = pre Again V' 0 has a

free*—divisor structure with

. 0
Derlog* (V') = Ogp+1 {1, -+ Cps a}

where {(1,...,(p} generate Derlog*(V), with good defining equation h;. In all
that follows, we will see that this argument allows us to assume that the natural
modules of vector fields defining free* divisors may always be assumed to contain
an Euler-like vector field. We will refer to the above as the standard construction
of an Euler-like vector field.
2) For a free* divisor V,0 C CP with good defining h and Euler-like vector field e
we let

Derlog*(h) = {¢ € Derlog* (V) : ((h) = 0}
By the same argument as in [DM, §2], Derlog™(h) is a free O¢r p-module of rank
p—1and

Derlog* (V') = Derlog™*(h) ® Ocr o{€}

Finally, as for free divisors, we define Tjo4+(V)(,) = (Derlog®(V))(,) and similarly
for Tlog* (h)(y)

3) Measuring Nontriviality for Free* Divisors



6 JAMES DAMON

For any hypersurface V,0 C CP with reduced defining equation h, one free*
divisor structure is defined using Derlog*(V') = h - 6, which is trivial in the sense
that for any y € V, we have Tjog+ (V) (y) = (0).

Such trivial free* divisor structures provide no new useful infomation. The value
of a free* divisor structure depends on how closely it approximates Derlog(V'). We
next define geometric measures of this closeness. For any O o—module M C
0, we let Fy(6p/M) denote the g—th Fitting ideal of 6,/M and let Fy(M) =
supp(Fq(0p/M)). Then, F, (M) ={y € C° : dimc(M) ) < q}. I F,__1(M) #
Fp_q(M) and codim(F,_,(M)) = s, then we say M has rank (at least) q off codi-
Mension s.

For specific modules of vector fields, we abbreviate Fy(Derlog™(V)) by Fy(V),
Fy(Derlog®(h)) by Fy(h), and similarly for F;(V') using instead Derlog(V), etc.
As Derlog™(V) C Derlog(V), Fy(V) C Fy(V). In the case that Derlog™(V) is
a Lie subalgebra of Derlog(V), Derlog*(h) is a Lie ideal. Both Derlog* (V) and
Derlog™ (h) define singular foliations of V. Then, F,_ (h) C F,_ (V) define the
analytic subsets where the leaves of the foliations have dimension < g.

We shall see in §4 that to use the free* divisor structure to compute the number
of singular vanishing cycles for nonlinear sections fy : C*,0 — CP,0 of V, 0, we must
have fy transverse off 0 to the singular distribution of V' defined by Derlog*(h). For
example, if n < p, then for each 0 < ¢ < p — n, this requires n < codim(F,_,(h)).

By the reduced rank of the free* structure at a point y € V, we shall mean
dim cTiog+ (h)(y)- Then, r = dim¢Tjog+(h)(o) is the minimum reduced rank. If
n < p —r, then a necessary condition for transversality off 0 is that the set of
points where the reduced rank = r has codimension < m. Thus, we seek free*
divisor structures with as large a rank off as small a codimension as possible, with
especially Fy ,.(h) as small as possible.

4) Ezponents for Free* Divisors

Let {i,---,(p} generate Derlog™(V) with (; = >, a,-j%. We denote det(a;;)

by det((1,- .., (), or more simply det((;). It is a generator of Fo(6,/Derlog*(V)).
Also, let h be a reduced defining equation for V,0 with h = [] h;, where each h;
defines an irreducible component V; of V. Then, by condition 2 of (1.1), det(a;;) =
u-[[h;™, where u is a unit. The exponents m; measure componentwise how much
Derlog™ (V) fails to define a free divisor structure for V.

Remark 1.4. Many of the basic properties of free divisors given in [D3, §1- 3] ex-
tend to free* divisors. To extend both the definitions and results to free* divisors, we
simply replace Tjo4V and Tioq(h) by Tjog+ V and Tjg+ (h), and give the “*”analogues
of algebraic transversality, algebraic general position, transverse union, almost free
divisor, etc.

We illustrate the preceding with several examples.

Example 1.5. The Whitney umbrella V,0 is the image of the finite map germ
fo:C2,0 — C,0 with fo(z1,22) = (22, 2122,72) = (Y, Z,W) and is defined by
H(Y,Z,W)=YW? - Z? = 0. It is not a free divisor; in fact (see e.g. [D2, (1.1)],
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Derlog(V') is generated by

0 0 0 0 0 0

L) m =Wap+Zaz, m=Was-Wap, m=WYaz+Zap,
Y 5 0
and T]4—2Z6—Y+W B_Z

However, it has several nontrivial free* divisor structures. One is given by D,
generated by {e = am — bna,n3, Zns — W2n2}, where a # b, and a second by D
generated by {e = am — bz, n4, Zn3 + WY 12}, where a # b,0. D; has reduced
rank 1 off the “handle”, i.e. the Y—axis, while D5 has reduced rank 1 off the ¥ and
W—axes. Both have exponent 2. We use D; to compute the vanishing topology for
nonlinear sections in §4.

Example 1.6. An arrangement of more than p hyperplanes through 0 € CP which
are in general position off 0 is not a free divisor for p > 2. However, such an arrange-
ment is an almost free divisor, obtained as the pullback of a Boolean arrangement
[D3, §5]. Consider the case of such an arrangement of four planes through 0 € C3.
Any two such are equivalent by a linear transformation so we consider A defined
by zyzf = 0 where £ = z + y + z. Although it is not free, it is a free* divisor in C*
defined by Derlog”(A) with generators

(1.2)

0 0 0 0 0 0
G —37(24‘5)% —Z($+€)$ T 5w’ G = —y(Z‘Hf)a—y +z(y+€)§ T 5

0 0 0 0 0 0
G=-zly+5 +ylz+ )6y+3w, and  Go(=e) %5 Ve, t 7o
A computation shows det((;) = xyzf2, so the free* structure is reduced on all
hyperplanes except £ = 0 and has reduced rank 2 up to codimension 3.

Third, consider general surface singularities in V,0 C C3,0. Surface singulari-
ties which are free divisors always have nonisolated singularities. Isolated surface
singularities in C* are “almost free divisors”in the sense of [D3]. Weighted homoge-
neous surface singularities with smooth singular set can be free or not, depending
on special algebraic properties identified in [D8]. The next result shows that all
weighted homogeneous surface singularities are nontrivial free* divisors.
Proposition 1.7. If V,0 C C® is a weighted homogeneous surface singularity of
nonzero weight, then V,0 has a natural “Pfaffian” free* divisor structure in C* of

exponent 2 and of reduced rank 2 off Sing(V). In particular, if f has an isolated
singularity, the free* divisor structure has reduced rank 2 off codimension 3.

Proof. Let h be a weighted homogeneous defining equation for V,0. We suppose
wt(h) = d # 0, where wt(y;) = a;. Also, we denote the determinantal vector field
Oh 0

Nij = 7—5— — =—5—- For V x C C C*, let w denote the coordinate for the last
dyi Oy;  Oy; y;

factor. We define the generators for Derlog® (V) by
0 . 0
G = njk tayig 0= 1,2,3 and (o = —de = _Zaiyia_yi-

where for ¢ > 0, (ijk) is a cyclic permutation of (123).
The matrix of coefficients for (1, (s, (3, (o is skew—symmetric; hence, its determi-
nant is the square of the Pfaffian. A straightforward computation using the Euler



8 JAMES DAMON

relation for h shows the Pfaffian = d- h, hence {(;} defines a free* divisor structure
of exponent 2. Furthermore, (1, (2, (3 generate Derlog*(h) and their 2 x 2 minors
generate an ideal containing J(h)2. Thus, the free* structure has reduced rank 2
off Sing(V). O

2. COHEN-MACAULAY PROPERTIES OF GEOMETRIC SUBGROUPS

We now wish to extend the main Theorem 1 of Part 1 to more general situa-
tions involving discriminants for versal unfoldings for general geometric subgroups
of A or K. These groups include all of the standard equivalences. Moreover they
satisfy the basic theorems of singularity theory such as the finite determinacy theo-
rem, the versal unfolding theorem, and infinitesimal stability implies stability under
deformations (see [D3]).

We consider generally a geometric subgroup G of A or K for the category of
holomorphic germs . Recall this means that there is an action of G on F where F
is an affine subspace of C(n,p), the space of holomorphic germs f : C*,0 — CP,0.
There is also a corresponding action of the group of unfoldings G, (g) on the space
of unfoldings F,,(q) on ¢ parameters, for all integer ¢ > 0. These actions satisfy
four conditions given in [D5]. For an unfolding F' € F,,(q), we have the orbit map
ar : Gun(q) = Fun(q) and the corresponding infinitesimal orbit map

dar : Tgun,e(q) — T}—un,e(q)'

The extended tangent space is the image dog (T Gun,e(q)) = TGun,e - F, and the
normal space is the quotient NGyp e - F = TFyn,e(q)/TGun,e - F. In the case
of germs f € F, we denote the extended normal space by NG, - f. These are
analogues in the Thom—Mather framework of “(relative) T'”. A germ f has finite
G—codimension if dim ¢ NG, - f < co. In this case it follows by an extension of the
preparation theorem for adequate systems of rings [D5, Cor 6.16] that NGy e - F'
is a finitely generated Ogq p—module.

We are interested in a special class of such subgroups G. Let F' € Fu,(q) be
an unfolding of a germ f having finite G—codimension. In what follows, we either
represent F' by F(z,u) = (F(z,u),u) or (F,(z),u). We are interested in values
u such that F(-,u) is not G-stable. Of course, in general G-equivalence does not
necessarily make sense for germs at points other then 0. Nonetheless we can define
the G-discriminant of the unfolding F' by

Dg (F) = Supp(Ngun,e ' F)

Following Teissier [Te], Dg(F') has an analytic structure given by the 0-th Fitting
ideal of NGy - F (as an Ocqs g—module).

Remark . There is ambiguity between what constitutes bifurcation sets versus
discriminants for geometric subgroups. We should strictly speaking refer to Dg(F')
as the bifurcation set of F'. However, by [D9], it often can be viewed as the dis-
criminant of an associated group Ky for appropriate V. For this reason we will
think of discriminants and bifurcation sets as being examples for different geometric
subgroups of this common notion of “discriminant”. Where we want to specifically
identify the bifurcation aspect we will refer to it as the bifurcation set.

If Dg(F) geometrically captures where F(-,u) is not stable, this would imply
that Dg(F') is preserved under G self-equivalences of F'. Such equivalences are
given infinitesimally by G-liftable vector fields.
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Definition 2.1. For a geometric subgroup G of A or K, a G-liftable vector field
for Fis a germ of a vector field n € §, such that there is a germ of a vector field
& € TGyn,e satisfying:
(2.1) dar(n+€) =0

If we integrate n + £ and 7), we obtain flows ® and ¢ which commute with the
projection pr : C"tP+4 — Ci¢. If ¢ preserves Dg(F), then differentiating implies
that 1 € Derlog(Dg(F')). We formalize this property as follows.
Definition 2.2. We say that a geometric subgroup G of A or K, has geometrically

defined discriminants if for any versal unfolding F' of a germ f having finite G-
codimension, if £ is a G-liftable vector field for F', then £ € Derlog(Dg(F)).

All geometric subgroups which we consider will have an appropriate geometric
characterization of their discriminants and so have geometrically defined discrimi-
nants in this sense.

Example 2.3. For a germ of a variety V,0 C CP, the group Ky has geometrically
defined discriminants.

To see this let F': C"T4,0 — CPT2,0 be a versal unfolding of a nonlinear section
fo of V. Also, let Dy (F) denote the Ky—discriminant of F. We will show that
if ¢ is Ky-liftable with local flow ¢, then ¢; preserves Dy (F). This implies
¢ € Derlog(V).

Then, ¢ being Ky -liftable means there are germs of vector fields

0 0
¢ e O@+q’0{a—m}’...,%} and né€ OC"+‘1,0{C15“‘3CP}
satisfying:

(2.2) E+QOF) = mnofF.

Let ¢+, 14, and 9, denote the flows induced by ¢, &, and n on respectively C?,0,
Cn*+9,0 and C**P*+9 0. Then, 7o 1 = @ o, for m: C*T7 — C9 the projection.
Also, we have the commutative diagram

Cnta ,0 _F) (Cp-i-q-l-n’(]
(23) ‘pltT th

Ccnte,0 _ﬁ‘) Cptatn,Q

where F(z,u) = (F(z,u),u,z). Then, the algebraic transversality of F(-,uq) to V
at xg is equivalent to that of F to V =V x CI*t™ at (zg,ug). This latter condition
is equivalent to

(2.4) dF(z0,u0)(TC™) + Tiog Vg, = Ty, CPH0*",

for §o = F'(xo,u). However, as both ¢;; and 1) are diffeomorphisms for fixed ¢, it
follows from (2.3) that by applying di:(fo), (2.4) is equivalent to

(2.5) dF (20, u0)(TC™) + d(§o) (TiogVgo) = T CHIH™.

Finally, ¢;(V) = V. Hence, let x € Derlog(V') and let h define V. Then 9. (x)(h) =
x(hoty). Since hot), vanishes on V, it has the form g(y, u,z)-h. Thus, x(ho¢y) =

91(y,u, ) - h. Hence, ¥4.(x) € Derlog(V); and so dyy(§o)(TiogVie) = Tiog Vi, (0)-
Thus, transversality, or failure thereof, is preserved under the action by (p1¢,¥¢),
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and thus so is the Ky —discriminant under ¢;. Thus, ( is tangent to Dy (F) and so
belongs to Derlog(V'). This completes the verification.

Now we are ready to introduce the Cohen—Macaulay property for geometric
subgroups and state what we mean by a group having a reduction to such a group.

Definition 2.4. A geometric subgroup G of A or K will be said to be Cohen-
Macaulay if it has geometrically defined discriminants; and if for each versal un-
folding F' € Fyun(q) of a germ f having finite G—codimension, NGy, . - F' is Cohen—
Macaulay as a Ocs p—module, with supp(NGyn e - F') of dimension ¢ — 1.

Example 2.5. For a free divisor V,0 Cc C?,0 with n < hn(V), the group Ky
acting on nonlinear sections fy : C*,0 — CP,0 is Cohen—Macaulay. To see this, we
note that by Example 2.3, Ky has geometrically defined discriminants (this does
not depend on V being free). Also, as n < hn(V), by the proof of Lemma 3.4
of Part I [D6], NKv,un, - F' is Cohen-Macaulay and by Proposition 2.4 of [D6],
Dy (F) = supp(NKv,un,e - F) has dimension g — 1.

For complete intersections, the situation becomes more complicated. However,
the analogous group is close to being Cohen—Macaulay. This can be made precise
using the following definition.

Definition 2.6. Given a geometric subgroup G of A or K which has geometri-
cally defined discriminants, a Cohen—Macaulay reduction of G (abbreviated CM-
reduction) consists of a geometric subgroup G* C G which still acts on F (and Fy,)
such that:

(1) G* is Cohen—Macaulay;

(2) f € F has finite G*—codimension iff it has finite G—codimension;

(3) if F € Fun(q) is an unfolding of a germ f which has finite G—codimension,
then viewed as O g—modules,

(26) supp(Ng;n,e : F) = Supp(Ngun,e : F)

Remark 2.7. It follows that the CM-reduction G* also has geometrically defined
discriminants. As G* is a subgroup of G, G*-liftable vector fields are also G-liftable.
Hence, they belong to Derlog(Dg(F)) = Derlog(Dg«(F')), by (2.3).

The second criterion in the “motto” stated in the introduction concerns the gener-
icity of Morse-type singularities. Because each group G would require its own form
of Morse-type singularity, we state the condition in a form which avoids considering
individual cases.

Definition 2.8. We say that a geometric subgroup G of A or K with a CM-
reduction G*, has generically G*-liftable vector fields if for a G—versal unfolding
F (on ¢ parameters) of a germ fy of finite G—codimension, there is a Zariski open
subset Z of Dg(F)re, (intersecting each component in a neighborhood of 0) such
that:
(1) if h is a reduced defining equation for Dg(F) then there is an inclusion of
sheaves restricted to Z

h -0, C Derlog®(Dg(F));

where Derlog*(Dg(F)) denotes module of G*—liftable vector fields; and
(2) if u € Z, then

Tlog* (Dg(F))(u) = Tu(Dg(F))
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If G is itself Cohen-Macaulay, we say it has generically G-liftable vector fields
provided the preceeding conditions hold with G* = G.

Remark . In part I, we showed that genericity of Morse type singularities for Ky —
equivalence for V, 0 a free divisor implied the genericity of Iy liftable vector fields.
The crucial point is to be able to use the genericity of Morse—type singularities to
establish the genericity of G*-liftable vector fields. We provide a strategy for doing
this and use this several times in Part III [D7].

We can now state the first basic result which implies that discriminants for
various geometric subgroups G are free divisors.

Theorem 1. i) Suppose that the geometric subgroup G is Cohen—Macaulay and
generically has G-liftable vector fields, then Dg(F) is a free divisor with

Derlog(Dg(F)) = module (Lie algebra) of G-liftable vector fields.

i1) If instead G has a Cohen—Macaulay reduction G* which generically has G*-liftable
vector fields. Then, Dg(F) is a free divisor with

Derlog(Dg(F)) = module (Lie algebra) of G*liftable vector fields.

As an indication of its applicability, we mention that besides including the results
from part I, this theorem also applies to: groups of equivalences for functions and
almost free divisors on an ICIS, allowing both to vary (by giving a CM-reduction),
and to the group v K for “boundary singularities”, which is Cohen-Macaulay.

In the absence of genericity of Morse-type singularities, we can still conclude

Theorem 2. i) Suppose that the geometric subgroup G is Cohen—Macaulay. Then,
Dg(F) is a free* divisor for

Derlog*(Dg(F)) = module (Lie algebra) of G-liftable vector fields.

i1) If instead G has a Cohen—Macaulay reduction G*. Then, Dg(F) is a free* divisor
for

Derlog*(Dg(F)) = module (Lie algebra) of G*-liftable vector fields.

Remark . We observe that despite the notation, G and F typically denote a
collection of groups and spaces which depend upon n, p, and (for unfoldings) g.
Whether G or G* are Cohen—Macaulay or whether there is genericity of G or G*—
liftable vector fields may depend upon the dimensions n and p, so results may
include conditions on dimensions.

It follows that despite the failure of genericity of Morse type singularities, we
may still conclude for discriminants that the module of liftable vector fields defines
a free* divisor structure. As an example of this we consider the consequence for
Ky equivalence for nonlinear sections fy : C*,0 — CP,0 of a free divisor V,0. Even
if n < hn(V) (the holonomic codimension of V), frequently V' does not generically
have Morse-type singularities in dimension n. Nonetheless, provided n < hn(V),
the discussion in Example 2.5 implies Ky is Cohen-Macaulay. Hence, Theorem 2
allows us to conclude.

Theorem 3. Suppose that V,0 C CP,0 is a free divisor and that F is a Ky —versal
unfolding of fo : C*,0 — CP,0 with n < hn(V'). Then the Ky —discriminant Dy (F)
is a free* divisor for

Derlog*(Dy(F)) = module (Lie algebra) of Ky —liftable vector fields.
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As applications of this we give several corollaries.

For finitely 4-determined germs fy : C*,0 — C?,0, we proved in part I that if
fo belongs to the “distinguished bifurcation class” of germs then the bifurcation set
of the A-versal unfolding is a free divisor. This restriction excludes a number of
classes of germs occurring in the nice dimensions (in the sense of Mather [M]). We
can extend this to all of the nice dimensions as follows.

Corollary 2.9. Suppose that fo : C*,0 — CP,0 is a finitely A— determined germ
with (n,p) in the nice dimensions. Then, the bifurcation set B(f) for the A-versal
unfolding f of fo is a free* divisor for

Derlog*(B(f)) = the module of A-liftable vector fields.

In fact, by the argument for proving Theorem 3 of Part I, let f, be obtained from
f by pull-back by a germ go. Then, the bifurcation set B(f) = Kps)—discriminant
for g, the Kp(s)—versal unfolding of go. By [D2] and [D6] the Kpg(s)-liftable vector
fields are the A-liftable vector fields. That (n,p) is in the nice dimensions then
implies that n < hn(D(f)) so that Theorem 1 applies.

Second, we consider the case of the special A—equivalence of complete intersection
map germs fo on isolated complete intersections X, 0, where we allow both f; and
X to vary. In [MM], Mond and Montaldi show that deformations of such germs
can be analyzed by the equivalence of sections of the discriminant of the complete
intersection Xo = f5 *(0). For a limited range of dimensions given by [D6, Theorem
9.3], the bifurcation set for the versal unfolding will be a free divisor. More generally,
we can relax the dimension restriction.

Corollary 2.10. Suppose that fo : X,0 — CP,0 is a complete intersection map
germ defining an isolated singularity Xo,0 on an isolated complete intersection
singularity X,0. Let F : X — CPTY9 be the versal deformation for this special A
equivalence (induced by the versal unfolding of the germ defining Xo). If Xo,0 is
an ICIS defined by a simple germ, then the bifurcation set B(F) is a free* divisor
for

Derlog*(B(F)) = the module of Kp(ry—liftable vector fields.

We can still use the argument of Mond-Montaldi [MM] to represent fo as a
pullback of the versal unfolding F' of the germ defining X¢ by a section of D(F).
Then, D(F) is free by [L] and the simplicity of the germ defining X, implies that
hn(D(F)) = oo. Thus, Theorem 1 applies.

The third consequence is for nonlinear arrangements. Only Boolean arrange-
ments (arrangements consisting of all coordinate hyperplanes) generically have
Morse-type singularities; nonetheless for general free hyperplane arrangements we
can conclude the following.

Corollary 2.11. Suppose that A C CP is a free hyperplane arrangement. Let
Ao = f5'(A) be a (nonlinear) arrangement defined via fo : C*,0 — CP,0. Then,
the K o -discriminant of the K 4—versal unfolding of fo is a free* divisor for

Derlog*(D4(F)) = the module of K a-liftable vector fields.

We now turn to the proofs of Theorems 1 and 2, although we prove them in the
reverse order.

Proof of Theorem 2. The proof we give is a modification of an argument of Looi-
jenga [L] but we use instead Saito’s criterion [Sa] for a free divisor. We give the
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proof in the case that G has a Cohen—Macaulay reduction G*. For the case that G
itself is Cohen—Macaulay we just apply the argument given with G* = G.

We suppose fo : C*,0 — CP,0 has finite G—codimension and that n and p are
dimensions for which G has a Cohen—Macaulay reduction G*. Then, by assumption,
fo has finite G*—codimension. Suppose F' € F,,(q) is an unfolding of fo and has

the form F(z,u) = (F(z,u),u) with
oF

2.7 . = OF = . 1<i<q.

(2.7) Pi i N - ST 4q

If {¢1,...,94} spans NG} - fo, then since TG} - fo C TG, - fo, it follows by the
versality theorem (see [D5]) that F' is both a G* and G—versal unfolding of fo.
Moreover, suppose dimcNG. - fo = ¢’ and that F; is a restriction of F' which is
a G—versal unfolding on ¢' parameters. Then, by the same versality theorem, F
is a G—trivial extension of Fy on q — ¢' parameters. Hence, Dg+(F) = Dg(F) ~
Dg(Fy) x C1=9". Hence, since a free* divisor structure is defined stably for some

F
suspension Dg(F;)xCt, it is enough to consider F. If we take o, = 0, then g— =0,

Uq

0
and v will be a G*-liftable vector field and (by the standard construction) an

q
Euler-like vector field.
Next, we consider the G

un,e

(2.8) NG, .- F = Tfun,e/Tan,e F

un,e

normal space

It follows from the Preparation theorem (for adequate systems of DA algebras
[D5, §6]) that NG . - F is a finitely generated Ocs p—module on the generators

un,e
{¢1,...,94}. Hence, we have an exact sequence
0 o
2.9) 0 y L —2 Ocio{z} —= NGipe - F —— 0
K3

where the map « sends %} p; and £ denotes the kernel of a. Then, £ will be

our Derlog*(Dg(F)).
We first characterize £ as the module of “G*-liftable vector fields”. As

daF(_é) € Tg:n,e -F and daF (77) = a(n)

(2.1) is equivalent to n € £. Thus, at least £ is the module of G*-liftable vector
fields. Next we summarize the key properties of £ by the following proposition

Proposition 2.12. Let F be the G* versal unfolding of fo given in (2.7). For L
given in the exact sequence (2.9):

(1) L is the Lie algebra of G*-liftable vector fields;

(2) L contains an Euler-like vector field;

(3) L is a free Oca g—module;

(4) L is of rank q so B is given by a q X g—matriz, whose determinant (which
is the generator for the 0-th Fitting ideal of NG, . - F) defines the G*~
discriminant of F; hence, supp(8,/L) = Dg(F).

Proof of Proposition 2.12. We have already seen that L is the set of G*-liftable
vector fields and contains an Euler-like vector field. Next, to see that £ is a
Lie algebra, we observe that it is the tangent space to the group of G*-liftable
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diffeomorphisms on C?,0, as described in remarks preceding Definition 2.2. By a
standard argument, £ is a Lie algebra.

To establish 3), we observe by 1) of the definition of CM-reduction that NG, -
is Cohen-Macaulay as an Oge o—module. Hence, it is a Cohen-Macaulay module

over Op, where
D = supp(NGyy,-F) (= Dg(F)).
Since dim D = ¢—1, the Auslander—-Buchsbaum formula implies that NG _-F has

projective dimension 1. Thus, it follows that in (2.9) that £ is a free Ogq ,of,module.
Finally, it remains to prove 4). By 3), we know that £ is a free Oge o—module.

As $ is an inclusion, its rank is no greater than g, however, it cannot be less than ¢
*

as supp(N Gy, . - F) has dimension ¢ — 1. Thus, £ has rank ¢, and supp(NG;, . - F)
is defined by the vanishing of det(3) (which is the generator of the 0-th Fitting
ideal of NGy, - F). This completes 4) and the proof of Proposition 2.12. a

To finish the proof of Theorem 2, we note that by 3) of the definition of CM-
reduction,

SUPP(Nan,e - F) Supp(Ngun,e - F)
(2.10) = Dg(F).

Thus, supp(8,/L) = Dg(F).
Finally, since G has geometrically defined discriminants, £ C Derlog(Dg(F)).
O

Proof of Theorem 1. We use the notation in the proof of Theorem 2. Again we give
the proof when G has a CM-reduction G*.
If we extend the G—versal unfolding F; to a G*—versal unfolding F', then

(2.11) Dg-(F) = Dg(F) ~ Dg(F)xCi9.

Thus, it is sufficient to prove that Dg(F') is a free divisor.

The module of G*-liftable vector fields is the free O¢s p—module on g generators
Derlog™(Dg(F)) C Derlog(Dg(F)). We apply Saito’s criterion to a set of free
generators of Derlog*(Dg(F)) = L given by Proposition 2.12. Thus, it is sufficient
to show det(f), which is a generator for the 0-th Fitting ideal, is a reduced defining
equation for Dg(F).

We consider the Zariski open subset Z of Dg(F')yeq given in Definition 2.8. At

a point u € Z, we may choose local coordinates u; = h,us,...,uq. Then, by
0

(2) of Definition 2.8, there are (; € Derlog*(Dg(F)) such that (; = uy - . and
U1

0
Ciw) = %,i = 2,...,q. Hence, the determinant of the coefficients of the (;
i

has the form unit - u; which defines Dg(F) near u. Thus, the 0-th Fitting ideal
defines Dg(F) with reduced structure near u. Hence, det(8) defines Dg(F) with
reduced structure. By Saito’s criterion, Dg(F) is a free divisor with Derlog(Dg(F’))
generated by a set of generators of Derlog*(Dg(F)), so they agree.

O
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3. Ky-DISCRIMINANTS OF COMPLETE INTERSECTIONS

In this section, we consider Ky —Discriminants of versal unfoldings for sections
of nonisolated complete intersections V,0. We first identify a special class of “free
complete intersection singularities” extending the class of free divisors.

Suppose the complete intersection V,0 C CP,0 is defined by the equation H :
CP,0 — C*,0. Just as for divisors, we define

Derlog(H) = {(€6,:((H)=0}.

This is the module of vector fields tangent to the level sets of H. The associated
sheaf Derlog(H) is coherent.

Definition 3.1. A complete intersection V,0 C CP defined by H : C?,0 — C*,0
(p > k) will be called an (H-) free complete intersection if Derlog(H) is a free
O o—module. Then, H will be called a free defining equation for V.

Remark . The coherence of Derlog(H) implies that if V' is H—free, then Derlog(H)
will have rank p — k as an Oge o —module.

We will frequently abuse terminology and call V' a free complete intersection.
For example, a product of free divisors is a free complete intersection (see §5 for
properties and examples). For a free divisor a good defining equation is a free
defining equation (but not conversely, see [D3, Example 2.11 d]).

In general, the properties of free complete intersections follow those of free di-
visors very closely. Nonlinear sections have a singular Milnor fiber and one can
compute the singular Milnor number and higher multiplicities as for nonlinear sec-
tions of free divisors (see [D3, Parts 2, 3]). One might then expect that just as for
isolated singularities and free divisors, the Ky —discriminants of versal deformations
of nonlinear sections of a free complete intersection V, 0 will also be free, provided
V generically has Morse—type singularities in the appropriate sense. We next con-
sider a simple example for which this is not the case. This example was worked
out with Anne Frithbis—Kriiger, using a package she developed for the computer
algebra system “Singular”[Sg]. We make use of results from §§5 and 7.

Example 3.2. We consider the free complete intersection V = V; x V5 C C%, where
Vi = {(z,y,2) € C* : hy(w,y,2) = zyz = 0} and Vo = {(w,v) € C? : hy(w,v) =
wv = 0} are both Boolean arrangements, and hence free divisors. Also, by Lemma
7.7 of part I, each V; generically has Morse type singularities in all dimensions.
Hence, by Proposition 7.5 below, the product V = V; x V5 also genericially has
Morse—type singularities in all dimensions.

Next, we define a linear section fo : C2,0 — C°,0 by fo(s,t) = (s + 2t,s +t,t —
8,8 —3t,t — 5s). By choosing the weights of all variables to equal one, fo and V' are
both weighted homogeneous. By Proposition 5.6 below, Derlog(V) is generated by:

0 0 0 0 0 0 0 0 0 0
{»’U%a ya_y’ Z&a w(?_w’ U%, h?%a h26_y’ hz&a hla—wa hl%}
Using these we can compute NKy - fo and verify by the infinitesimal criterion
for versality for Ky—versality (Theorem 1 of [D1]) that a Ky—versal unfolding

F(s,t,u) = (F(s,t,u),u) of fo where u = (uy,...,us) is given by

F(s,t,u) = fo(s,t) + (0,0, u1, ust + us, ust + us).
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For F' to be weighted homogeneous, we must assign weights wt(uy, u2, usz, U4, us) =
(1,0,1,0,1). Thus, although the module of Ky-liftable vector fields is graded,
the graded pieces are not finite dimensional, but are modules over the ring of
germs on (u2,u4). However, the package of Anne Frithbis—Kriiger, “KVequiv.lib”for
the program Singular, enables one to find generators of fixed weight and low de-
gree in (uz2,u4). From among low weight Ky -liftable vector fields, were identified
¢i,i = 0,...,5 of weights 0,1,1,2,2,3, such that their (u2,u4) components after
reducing mod (ug,u4) were respectively: (0,0), (ug,*), (us,*), (u3,*), (0,42 + g1),
and (0,u} + g2). Here (o is the Euler vector field and has us component equal to
us; and g; does not contain as a nonzero term u%. Also, there is no element with
(u2,us) component (0,us); nor do the terms obtained from (1, (2, and (3 with uy
component 0 contain terms with pure powers u2 or 43 in the uz components. Thus,
it follows that all 6 of the (; are needed as generators so the number of generators
> 6, and the module of Ky -liftable vector fields is not a free module.

Thus, for sections of free complete intersections, the best one can hope for in
general is that discriminants are free* divisors (see the discussion in §8).

We shall establish this by giving a Cohen-Macaulay reduction Kj, for Ky and
applying Theorem 2. To define K}, we recall the subgroup Ky of Ky which
preserves the level sets of H (see e.g. [DM, §3]). The subgroup of diffeomorphisms
K}, lies between Kg and Ky. It consists of elements of Ky (i.e. diffeomorphisms
of C?» x C",0) which when restricted to V' x C* are induced by restrictions of
diffeomorphisms from Kg (see §6).

We must replace the holonomic codimension hn(V'), used for free divisors, by
h(V). This is the codimension of the set of y for which Ti,,(h) () # TySi, where S;
the canonical Whitney stratum of V' containing y. For example, by an argument in
[D3, §7], for the free complete intersection V = []._, V;, h(V) = min{h(V;)} +r—1.
Theorem 4. Let V,0 C CP,0 be a free complete intersection of codimension k. If
k < n < WV), then for nonlinear sections fo : C*,0 — CP,0, K3, is a Cohen—
Macaulay reduction for Ky . Hence, for a Ky —versal unfolding F' of fo, the Ky —
discriminant Dy (F) is a free* divisor for

Derlog*(Dy (F)) = module (Lie algebra) of K}, —liftable vector fields.

In light of Theorem 1, we ask when we have the genericity of Kj,—liftable vector
fields. In fact this almost never happens. It is not due to the failure of genericity
of Morse—type singularities for free complete intersections. We shall see in §7 that
this does often hold. Rather, it is due to Ky -liftable vector fields which are not
K3 -liftable. The exception is for the case of smooth V. As a result, we recover the
result of Looijenga [L] that for isolated complete intersection singularities (which
correspond to V' = {0}) the discriminant D(F') for a versal unfolding F is a free
divisor, with Derlog(D(F’)) the module of Ky -liftable vector fields.

4. VANISHING TOPOLOGY FOR SECTIONS OF FREE* DIVISORS

Given the abundance of free* divisors following from the results in the preceding
sections, we now consider the vanishing topology of nonlinear sections of a free*
divisor V,0. As V,0 is a hypersurface, nonlinear sections have a singular Milnor
fiber and singular Milnor number. We shall give a formula for the singular Milnor
number as the length of a determinantal module as in [DM], except that we will
find it necessary to subtract certain multiplicities of “virtual singularities”.
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Let V,0 C C?,0 be a free* divisor. We suppose, if necessary, that we have re-
placed V by an appropriate suspension. We also suppose H is a good defining
equation for V with Euler-like vector field e. Let fo : C*,0 — CP,0 be a nonlinear
section of V0 which has finite Ky— codimension. We recall [DM, §4] that a topo-
logical stabilization of fy consists of a family f; : U — CP, where U is neighborhood
of 0 in C™, satisfying : i) when ¢t = 0, f; is a representative of the germ fo which is
geometrically transverse to V on U\{0}, and ii) f; is geometrically transverse to V
on U for all sufficiently small ¢ # 0. Then, by [DM, §4], for a sufficiently small ball
B, about 0 of radius € > 0, ft_l(V) N B, is, up to homeomorphism, independent of
t and is homotopy equivalent to a bouquet of spheres of dimension n — 1. This is
the singular Milnor fiber, and the number of spheres is the singular Milnor number,
denoted py (fo)-

To compute this number for free* divisors, we note Derlog™ (V') defines a singular,
possibly nonintegrable, distribution on V. We must take into account the “virtual
singularities” where f; fails to be algebraically transverse to the distribution.

Definition 4.1. For a stabilization f;, a virtual singularity for a given ¢ is a point
x € U such that fi(xz) € V but
dfe()(C") + Tiog- (H) (,(a)) # 50 C-

By [DM], the codimension of the module TK g .- fo computes the singular Milnor
number in the case of a free divisor V. We introduce an analogue for the case of a
free*-divisor V.

. def of of
TICH,e'fO :e O@,O{a—mfl)a"wa—z_:/:ClOan"'an—lofO}
where Derlog™(H) is generated by (i, ...,(,—1. The normal space is given by
(4.1) NKye-fo = Of o/TK¥ - fo-

Then, /C_’;_I’efcodim(fo,x) =dimcNKY, - fo

Remark . Although TK7; , - fo is not always an extended tangent space for a
group action, it is in the case that V' = Dg(F) is a discriminant with G Cohen—
Macaulay or having CM-reduction G*. Then, K7}; is a subgroup of diffeomorphisms
Ky defined by replacing diffeomorphisms preserving V' by G (resp. G*) liftable
diffeomorphisms preserving the level sets of H (see §6).

For a virtual singularity = of f;, we let K} ,—codim(ft,z) denote the Ky -
codimension of the germ f; : C*,x — CP, fi(x). Then, we obtain the formula for
the singular Milnor number.

Theorem 5. Suppose V,0 C CP,0 is a free* divisor with good defining equation
H. Let fo : C*,0 — CP,0 be a nonlinear section of V,0 which has finite Ky~
codimension. For fy a stabilization of fo,

(4.2) pv(fo) = Ki.—codim(fo) — Y Ki ,—codim(f;,x;)
where the sum is over the finite number of virtual singular points x; for a given
sufficiently small value of t.

For t sufficiently small, all of the virtual singular points will occur in a sufficiently
small neighborhood of 0.

Proof of Theorem 5. We outline the argument which follows along the lines of [DM,
§5] except using the reduction. The module NK¥ , - fo is a determinantal module.
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If we sheafify the corresponding module for the stabilization f; we obtain a sheaf
N on a neighborhood U of 0 which is the quotient sheaf of OF, by the subsheaf
which is an Opy—module generated by

0 0
6—mfja"'76—£l7clofta"'vgp—loft}-

The support of N is one—dimensional and is then Cohen—-Macaulay by results of
Macaulay [Mc] and Northcott [No]. For the projection w : C*+1 — C, its restriction
to supp(/N) is finite to one so m,(N) is Cohen-Macaulay (and in fact free) over C.
Thus,

dimcNK3 . - fo dim ¢(m (N) [t - T (N))

dim ¢(m (N)/(t — to) - m(N))
(4.3) = ) dimcNKy, - (fo, 1)

Here the sum in (4.3) is over points (z;,%0) € supp(N). This sum splits into two
parts, a sum over points in V x {to} and a sum over points in the complement. For
(fio(zi),t0) = (yist0) € V x {to}, by assumption, Tjoy+ (V)(y,) = Ty, CP so the gen-
erators {(1,...,(p} evaluated at y; are linearly independent. Hence, {¢1,...,(p—1}
span the tangent space to the level set of H at y; = fy,(z;). Hence, the argu-
ment in Lemma 5.6 of [DM] implies that dim cNK7 . - (fi,#i) equals the Milnor
number of H o f;, at z;. Using complex Morse theory as in [DM, §4] yields that
the sum over (z;,t) € supp(N)\V equals the singular Milnor number of fo. The
remaining terms correspond to points in supp(N) NV which are exactly the virtual
singularities each contributing Kj; ,—codim(f, z;).

O

Ultimately, we would like to reexpress the terms on the RHS of (4.2) in terms of
invariants of NKvy - fo (or possibly NKg . - fo); however the dimensions of these
modules do not behave well under deformation. Another invariant of finite length
Ocr o—modules N is the Buchsbaum-Rim multiplicity [BRm], which we denote by
mpr(N). For determinantal modules such as N = NK% , - fo, mpr(IV) = dimcN.
Hence, we may restate Equation (4.3) for computing the singular Milnor number
solely in terms of Buchsbaum-Rim multiplicities

(4.4) pv(fo) = mpr(NKy (fo) — Y mer(NKi . (fi,z:))

with the sum is over the finite number of virtual singular points z; for a given
sufficiently small value of ¢. This leads us to the basic question.

Question. Can we replace the terms on the RHS of (4.4) by expressions involving
the Buchsbaum-Rim multiplicities of the modules Ny fo (or possibly NKg - fo),
and allowing certain virtual singularities?

Remark . In the weighted homogeneous case, for a Cohen—-Macaulay reduction
G* of a group G, we give in [D9] a formula for the number of vanishing cycles in a
stabilization of an unfolding f of fy in terms of the normal space of G*.

Next, we seek circumstances when we can simplify the expression representing
the sum over the virtual singularities. In the first special case, we suppose that for
the section fy, all stabilizations f; have virtual singularities on a curve C. For each
irreducible branch C; of C, there is a Zariski open subset of jets of germs of sections
g:C"0— @,y with y € C;, with NK?H,y),e - ¢ having minimum dimension c;.
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Then, we may perturb any stabilization so that at any virtual singular point z with
fit(z) = y € C; we have Kj; ,—codim(ft, ) = ¢;. Then, we can compute the singular
Milnor number as follows. Let (D(fo),C;) denote the intersection multiplicity of
the discriminant D(fy) and C; (where D(fy) has nonreduced structure so we count
intersection points y € D(fo) with multiplicity given by the number of critical
points mapping to y).

Corollary 6. Suppose V,0 C CP,0 is a free* divisor with good defining equation H.
Let fo : C*,0 = C,0 be a nonlinear section of V,0 of finite K}, —codimension with
the property that any stabilization of fo has its virtuael singularities on the curve C.
Then,

(4.5) pv(fo) = Kiy-codim(fo) — Zci'(D(fO);Ci)

Proof. We may first perturb fy by an isotopy so that f; is transverse (i.e. D(ft)
is transverse) to C. If f; is not 1 — 1 on its critical set, we further perturb it so it
does become so while still remaining transverse to C. Then, on each branch C; there
will be (D(fy),C;) transverse intersection points. The number of such transverse
points will remain fixed under an additional sufficiently small perturbation. We
may further slightly perturb f; if necessary to a stabilization f; which only has
virtual singularities z with f;(z) € C; of K} ,—codim(f;,z) = ¢;. Hence, the sum
on the RHS of (4.3) becomes exactly the sum on the right hand side of (4.5). O

Example 4.2 (“Twisted Whitney Umbrellas”). As a first example, consider a
section of the Whitney umbrella V' in (1.6) with the free* divisor structure with
Derlog* (V) (given by Dy for (a,b) = (1,0)) generated by {e = 1,13, Zns — W2ns}.
Consider a section of the form (Y, Z, W) = go(X, v, 2) = (y, 2,p(X,y)) where X =
(@1,..-,Tn_1) 50 go : C**t1 0 — C3,0. If we view V as the image of F' = (y2, uy, u),
then the pullback of F by go yields the germ fo(X,y) = (y2,yp(X,y?), X) with
fo:C*,0 — C**1,0. In the case n = 1 this gives a family of germs appearing in
Mond’s classification [Mol]. For fo to have finite .A—codimension, we must have
that (px,ypy) = (Pa1s- -+ Pzn_1,YPy) generates an ideal of finite codimension. The
singular Milnor number uy (go) equals the number of vanishing cycles for the image
of a generic perturbation of fy. In fact, for the case of germs f, : C2,0 — C3,0,
Mond [Mo2], de Jong—Van Straten [JVS], etc have directly related this to A.—
codim(fo).

We compute the singular Milnor number for general n. In carrying out compu-
tations, to reduce notation, we represent the ring Ocn+1 o by the coordinates for
the particular C"*', e.g. Ox .. From

990 990 990

(46) ox; = (anapwi)a 6:1/ = (]-aoapy)a 92 = (03]-,0)

0 0
we obtain by projection along 9% and 9% onto the third component

Oy 0z
NKige - 90 = Ox,y/(px, 0% (0 — 2ypy))
Thus,
(4.7) dimc(NKg,-90) = 2dimcOxy/(px,p)+dimc(Ox,y/(px,p — 2ypy)

A straightforward calculation shows that the virtual singularities only occur
along the “handle ”of the Whitney umbrella, i.e. the Y-axis; and that a generic
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virtual singularity has Kj; , — codim = 2. The intersection number of D(go) with
the Y-axis is given by the number of points where z = p = px = 0. Hence, it
equals dim Ox ,/(px,p). Thus, by Corollary 6 and (4.7)

pv(go) = dimcOx,y/(px,p — 2ypy)

If p is weighted homogeneous, this is exactly A, — codim(go), see [Mo1] for the case
of n =2.
Example 4.3. The second type of example we consider is a weighted homogeneous
surface singularity which is a free* divisor by Proposition 1.7. Let V,0 C C?,0 be a
weighted homogeneous surface singularity and let V' = V x C, with last coordinate
w. Given a nonlinear section of V, f; : C*,0 — 3,0 we construct a section
of V!, f : C*,0 — C*,0 defined using coordinates z = (z1,...,z,) for C* and
y = (y1,y2,y3) by f(z) = (y,w) = (f1(x), f2(z)). I f1; denotes a stabilization of
f1 as a section of V, then f; = (fi4, for) is a stabilization of f as a section of V.
Moreover, their singular Milnor fibers are homeomorphic. It suffices to consider f
and f; and NK},,.

As an example, consider a Pham-Brieskorn singularity V,0 C C2,0 defined by
h(y) = y¥ +y5* + 9§ = 0, and let wt(y;) = a;. We consider an “Aj_;” type section
of V xC

f(ﬂ)) = (fl(m)af2(x)) = (-'L"f'i‘ E $?,$2,$3,$1),
i=4
and consider a deformation where we only deform f;.

To apply Theorem 5, we recall from the proof of Proposition 1.7 the determinan-

oh 0 oh 0
tal vector fields n;; = ~— =— — —— =—, and the generators for Derlog*(h) given
) "= By; 0y; ~ 0y, Oy & g'(h) g
y

a . 0
(48) G =mptawim- i=1,23 and (= —de= _Za"y"a_yi'

where for i > 0, (ijk) is a cyclic permutation of (123).

of 0fi of of
— = (== 1 — = 1 — = 1
6-7;'1 (61'1 70’07 )5 61'2 (07 50) 0) 6%3 (0) 0) 70)
of .
and % = (2£L'], 0, 0, 0) for J Z 4.

If we project NKj;, - f off the free submodule generated by f;;,% =1,2,3 onto the
first component and take the quotient by f;,,7 > 4, we obtain from the generators
in (4.8)
991 Oh |y 09 00 s 291
85171 ’ 8y3 g 2 65[11 ’ 8y2 g 3 38(171
with g : C®,0 — C*, 0 obtained from f by setting z; = 0,4 > 4. Considering degrees
in (4.9) we obtain dim ¢ NK3;, - f = 2k - 1)(¢ — 1)(m — 1).

Second, to determine the contribution from virtual singularities, we have z; = 0
for i >4, h =0, and the generators in (4.9), with g replaced by g¢, vanish. From

0
% =0.If ag;: = 0, setting the second and

third generators equal to 0 implies that y» = y3 = 0. We only consider points
where ho f; = 0; thus y; = 0 so g1 = 0. However, generically we can assume both

(49) N]C}{e . f ~ Oca /(—a191

the first generator, either gy, or
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agl t
8.’1)1

and (£ —1)(m — 1) solutions to the second and third generators = 0. At each such
virtual singular point, they generate the maximal ideal so the corresponding local
algebra as in (4.9) has dimension 1. Hence, Theorem 5 gives

pv (fi) = pvi(f) = 2k —1)(f —1)(m — 1) — k(£ —1)(m — 1)
(4.10) =(k—-1)(¢—1)(m - 1).

are not 0, so we may assume # 0. Then, there are k solutions to g1 = 0

This is also the Milnor number of the Pham-Brieskorn singularity z¥ + z* + 2§ +
>, 22 = 0. However, the singular Milnor fiber for a stabilization such as (z} +
Yr 3+t + 3P + 2§ = 0 must have singularities along =% + Y1, 22 +t =
zo = x3 = 0, and is superficially quite different from the Milnor fiber of this Pham-—
Brieskorn singularity. Is there an intrinsic way of seeing the relation between these
apparently quite distinct objects?

Example 4.4. Corollary 7 also applies to free divisors when n > hn(V). As a
last example, consider the surface singularity V,0 C C® defined by F(z,y,z) =
f(z,y) + zg(x,y), where both f and g are weighted homogeneous with f defining
an isolated curve singularity and wt(g) > wt(f). Let J(f) be the Jacobian ideal
of f. Suppose (J(f) : g) is a complete intersection ideal with generators {hy, ha}
satisfying the numerical condition

wt(hi) + wt(ha) + wt(g) = wt(z) + wt(y) + wt(H)

where H is the Hessian of F. Then V is a free divisor but with nonholonomic
stratum the z—axis [D8]. A generic virtual singularity is given by a Morse-type
singularity for K—equivalence (Example 7.7) of the form

n
o@1,...,2n) = (21,%2,% +Za:f)
i=3

whose discriminant is transverse to the z—axis. A straightforward computation
shows

dmNKy .- = dimcOqy/(J(f) 2 9),
the colength of the ideal (J(f) : g). Thus, the singular Milnor number for a
nonlinear section ¢ : C*,0 — C3,0 is given by
(A1) py(p) = Kipecodim(p) — col(J(f) : g) - (D(g), z-axis).

II: Discriminants of Sections of Free Complete Intersections

5. FREE COMPLETE INTERSECTIONS

We establish in this section several basic properties of free complete intersections.
Suppose V is a free complete intersection with free defining equation h, we first
remark that V' x C? is a free complete intersection with free defining equation hox
where 7 : CP*9 — CP denotes projection. This follows from the following simple
Lemma whose proof is straightforward.

Lemma 5.1. Let u = (uq,...,uy) denote local coordinates for C?, and let (; €
0,1 <i<r. Then,

Derlog(h) = O 0{C,---,¢}
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iff

G2
) T aul AR | auq -

Next, we give a simple criterion for establishing the freeness of complete inter-
sections.

Derlog(hom) = Ogp+a,0{C1,---

Proposition 5.2. Suppose V;,0 C CP,0,i = 1,...,r are divisors (not necessarily
irreducible) with reduced defining equations h; : C°,0 — C,0 such that:

(1) V! =UV;,0 C CP,0 is a free divisor (defined by [] h;);

(2) there exist Euler-like vector fields e; for h; such that e;(h;) = di;h;;

(3) V. =nV;,0 is a complete intersection defined by h = (h,...,h;).

Then, V,0 is a free complete intersection with free defining equation h.

Proof. We observe that Derlog(h) C Derlog(V'), and Derlog(V') is a free Ocp o—
module. Tt is sufficient to prove Derlog(h) is a direct summand of Derlog(V"') for
then it is a finitely generated projective Ocr p—module, hence free. We define a
projection

1 : Derlog(V') — Derlog(h)
(5.1) geg—Z%ei.
i=1 '

To see it is well-defined, let £ € Derlog(V'). Then, £ is tangent to Vj,eg\ Ujxi V.
Thus, £(h;) vanishes on Vj .4\ U;j2; V;, and hence its closure V;. Hence, £(h;) = @;h;
and % = ;. At least ¥(&) € 6,.

Moreover, it is easily checked that 9 is Ocr o-linear. It remains to check that
1) is projection onto Derlog(h). However, it is straightforward to check that: if
¢ € Derlog(V"), then ¢(€)(h;) = 0 all j, and if £ € Derlog(h), then ¢)(§) = £. This
completes the proof. O

We list several consequences.

Corollary 5.3. The product V,0 =[[V;,0 C CP of free divisors V;,0 C CP,0,i =
1,...,r with good defining equations h; is a free complete intersection with free
defining equation h = (hyomy, ..., hyom,), where 7; : C° — CPi denotes projection.

Proof. Let V! = V; x [] j2i &7, which is still free with defining equation h; o ;.
Then, V' = UV} is the production union of the V; and hence also free. Also,
the Euler-like vector fields e; for each h; can be trivially extended to CP? and
satisfy 2) of Proposition 5.2. Finally, V(= [[V;) = NV;. Thus, by Proposition
5.2, V,0 = [[ V4,0 is a free complete intersection with free defining equation h =
(hloﬂl,...,hroﬂr). O

As a consequence of Corollary 5.3, we deduce that products of any of the free
divisors listed in Part I, such as discriminants of versal unfoldings, Coxeter arrange-
ments, etc. yield free complete intersections. These are the main examples. The
simplest such is the product of {0} C C yielding the free complete intersection
{0} C CP. The product of r discriminants of versal unfoldings yields a free com-
plete intersection which is part of another discriminant of a versal unfolding where
at least r singular multigerms appear.
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Remark . Products of free divisors form a very special class of nonisolated com-
plete intersection singularities. However, a nonlinear section of such a product is
the intersection of the pullbacks of the individual free divisors. For a nonlinear
section algebraically transverse in a punctured neighborhood, such pullbacks are
“almost free complete intersections” [D3] which naturally extend the class of ICIS.
A second consequence is a weaker form of Proposition 5.2.

Corollary 5.4. Suppose V;,0 C CP,0,i =1,...,r are divisors with reduced defining
equations h; : CP,0 — C,0 such that:

(1) V! =UV;,0 C CP,0 is a free divisor (defined by [] hi);

(2) V =nNV;,0 is a complete intersection defined by h = (hy,...,h;).
Let C" have coordinates (t1,...,t;). Then, V xC",0 is a free complete intersection
with free defining equation h' = (e**thy om,...,et"h, o), where © : CPT" — CP
denotes projection.

Proof. We replace each V; by Vi = V; x C", and replace h; by h, = elih; o .
Then, e; = % is an Euler-like vector field for A} and e;(h;) = 0 if ¢ # j. Then,

V=V x C = UV} is still a free divisor (defined by [[A}), and V x C" =NV}
Thus, proposition 5.2 applies, yielding the result.
O

That products of free divisors are free complete intersections extends to products
of free complete intersections.

Corollary 5.5. The product of free complete intersections V;,0 C CPi 0,4 =
1,...,r with free defining equations h; is free with free defining equation h =
(hy omy,...,h. om,.), where again w; : C°P — CPi denotes projection.

Proof. The proof is by induction on r and reduces to verifying the result for r = 2.
Denote h = (hy omy,hoom), and let © = (z1,...,2p,) and y = (y1,...,Yp,) denote
local coordinates for CP* and CP2. Also, let

(5.2) Derlog(h) = Ooi 0{¢{", .., ¢}
where r; = p; — k;. Finally let p = p; 4+ pa. Then,
(5.3) Derlog(h) = Derlog(hy o) N Derlog(hz o 72)

(still 7; : CP» — CPi denotes projection). By Lemma 5.1
0
. 6—}
Ypo
with an analogous formula for Derlog(hs o 73). Each summand respects the decom-
position

(5.4)  Derlog(hiom) = Oc 0{Gi",. ﬁi)}@Om,o{%"
1

0 0 0 0
01) = 00970{6—3:1,...,61.—1)1}@O@’O{a—yl,...,%}.
Hence, by (5.3) and (5.4)
(5.5)  Derlog(h) = Ogof{¢”,....¢{} @ O o{¢t?,....¢P}.

O

By contrast, the module structure Derlog(V; x V) becomes increasingly compli-
cated. We use the above notation, except now the V; are free divisors so r; = p;.
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Proposition 5.6. Suppose V;,0 C CPi are free divisors with good defining equations
h;: CP:,0—» C,0 fori=1,2. Let p=p1 + p2. Then

Derlog(Vi x V3) = O o{¢M), 1<i<pr, (P, 1<i<ps,

0 0
5.6 h 1< < hi—, 1<i<
( ) 28.@@', SRSy S P 18yi: a _p2}
In particular, even if we restrict to V' = V4 x V» which is a complete intersection
of dimension p — 2, we obtain

(5.7) Derlog(V)jy = Ovol¢V, 1<i<p, (P, 1<i<p}coOP)

and Derlog(V') ;v has p generators which will fail to give it good algebraic properties
for either discriminants or for computing the vanishing topology of nonlinear sec-
tions. This observation motivates the introduction of Cohen—Macaulay reduction
for free complete intersections.

Proof of Proposition 5.6. We have Euler-like vector fields e; for h; so that e;(h;) =
dijhj. Let M denote the module on the RHS of (5.6). We easily see M C Derlog(V).
For the reverse inclusion, let ¢ € Derlog(V). We may write ( = (1 + {2 with
¢ € 0(m;), for m; the projection onto CPi. Hence, ((h;) = (i(h;). We claim
GeMi=1,2.
For example, we may write (h1)(= (1(h1)) = a1h1 + azhs. Then,

(G —arer)() = (¢ — arer)(h1) = azhs.
ohy Oohy

As ¢ —aje; €0(m), anhs € (=—,...,=——), the ideal in O¢p o generated by the
o0x1 O0xp, ’
Ohy Ohy . .
Fr However, o € Ocr1 0 and hy € Ogp2 0. Hence, hs is not a zero divisor in
b o ah oy Ohy Oy
an . Th an Ty = b 2 et
OC” ’0/(8.1'1 ) ) a$p1 ) us, ag € (6331 ) ) ampl ) a2 Z 8.772 €
0
= - — biho —.
£ (L —aner — Y bihy oz,
Then €(hy) = 0 and € € §(m;). Hence, by Lemma 5.1, € = > A;¢S". Thus,
0
Cl = w16+ Z bih2a_.1'i + Z )\jcj(l),
showing (; € M. O

Remark . The conclusion of Proposition 5.6 extends in a straightforward fashion
to finite products.

6. CM-REDUCTION FOR Ky—EQUIVALENCE FOR FREE COMPLETE
INTERSECTIONS

Before we begin the proof of Theorem 3, we give more detailed information about
the group Kj,. We recall that it is the subgroup of diffeomorphisms in Xy which
when restricted to V' x C" are induced by restrictions of diffeomorphisms from K.
Here Kg—equivalence is defined by the subgroup of Ky given by

Ke = {®eK:Ho¥=H}.
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for H the composition of H with projection onto C?. The extended tangent space
is given by

o 0k
Ox1’ " Oz’
where Derlog(H) is generated by (1, ..., (-

We have the inclusions

(6.1) TKme-fo = Oc o Go fo,---5Gr o fo}

Keg C ’Cf/ c Ky.

It is easily checked that K}, is a geometrically defined subgroup of A or K. To give
the extended tangent spaces, we note that I(V') - 8, C Derlog(V') and

0 0
62 TKi, fo = O ofo, . 2 (oo, ioo fo} +10V)-6(f0)
’ or1 oz,
where again (i,...,( generate Derlog(H). If V is a free complete intersection,

then r =p—k.
In addition, consider an unfolding F' : C*t9,0 — CPt?,0 of fo. We write
F(z,u) = (F(z,u),u) where we use local coordinates u for C?. There are defined
the associated tangent spaces for the unfolding groups. Let {(1,...,{n} be a set
of generators for Derlog(V). Then, the extended tangent spaces for the unfolding
groups are given by _
T,CV,un,e'F = OC"+‘1,0{3—£7"'766—£7C1°F7"'7CmOF}

and
of
" Oz

We note that the normal space for Kj, can be written

F _ _ _
(6.3) TIC{/,un,e'FZ OC"'*"’,O{gm:-- 7C1OFJ---JCTOF}+I(V)"9(F)-
1

N’C*V,un,e B = G(F)/TIC*V,un,e -F
0 OF oF _ _
(64) - OX,O{B_%}/OX,O{a—l_l---aa—%agloFa"')CT'OF}

where X = F~1(V).

To begin the proof of Theorem 3 that K35, is a CM-reduction of Ky, we first
establish condition (2) of 2.6. The codimensions are related by the next proposition.
Proposition 6.1. Suppose V,0 C CP,0 is a free complete intersection with free
defining equation H : CP,0 — C*,0. If n < WV), then, fo : C*,0 — CP,0 has
finite Ky —codimension iff it has finite K}, —codimension.

Proof. Let TKv, - fo, TKY,, - fo, NKv,e - fo, and NKY,, - fo denote the associ-
ated sheaves to the tangent and normal spaces TKv, - fo, TIC*V,G - fo, NKy.e - fo,
and NKY,, - fo. Then, by the nullstellensatz for coherent analytic sheaves, finite
Ky—codimension is equivalent to supp(NKy - fo) = {0}, and similarly for K} —
equivalence.

We claim that the condition n < hn(V') implies that

(6.5) supp(NKv,e - fo) = supp(NKy,, - fo)-

In fact, this follows from a more general result for unfoldings which we now consider.
d



26 JAMES DAMON

Associated to each of these normal spaces for an unfolding F' of f,, we have
sheaves denoted by N Ky, yn,e - F, and NK} - F which are sheaves of Ogn+q—

V,un,e
modules. The relation between the supports of the normal sheaves is given by the

following.

Proposition 6.2. Suppose V,0 C CP,0 is a free complete intersection with free
defining equation H : C°,0 — C",0, with n < WV). Let F be an unfolding of
fo:C*,0 —» CP,0. Then, as sheaves of Ocn+qs —modules,

(6.6) suppNKv,un,e - F) = supp(NKy, . o - F).

Proof of Proposition 6.2. For the assertion we note that
TIC;‘/,un,e : F g TICV,un,e ° F}

so we have the inclusion C in (6.6). For the reverse inclusion, we examine where
they differ. Because of the sheaf inclusion

I(V) : G(F) C TK::/,un,e - F,

a point (z,u) € supp(NKY, . - F) implies F(z,u) € V. If F(z,u) € V, then
(z,u) ¢ supp(NKY, . o - F) is equivalent to

(67) TlogH(z) + DF(.’L', ’LL) (T(z,u) Cn) = Tﬁ‘(z’u) .
However, the assumption n < h(V') implies that
TlogH(z) = Tlog‘/(z) = TS,

where S; is a stratum of the canonical Whitney stratification containing z. Thus,
(6.7) implies that F'is algebraically transverse to V' at (z,u) (see [D3, §2]). Thus,
(z,u) € supp(NKY,,,, . - F) implies (z,u) € supp(NKv,un,e - F) . Thus, we have

equality in (6.6). d

Finally, applying Proposition 6.2 to fy viewed as an unfolding on 0 parameters,
we obtain (6.5), completing the proof of proposition 6.1.

Now we turn to considering the Ky -critical set and discriminant. These were
defined in Part I in the case that V,0 was a divisor. However, the definition for V,0
a complete intersection is the same. Briefly, given V,0 C C?,0 and fy : C*,0 —
CP, 0 which has finite Ky —codimension, let F' : C*t9,0 — CPT4,0 be a Ky —versal

unfolding of fo. We write F(z,u) = (F(z,u),u) where we use local coordinates u
for C4. Also, we denote the projection 7w : C**9,0 — C9,0.

Definition 6.3. We define the Ky —critical set of F' to be
CV(F) = Supp(NICV,un,e - F)
Analogously we define the K}, —critical set of F' to be C},(F) = supp(N K} -F)

V,un,e
Remark 6.4. It follows from the definition of Cy (F), that it consists of points
(w0, u0), with yo = F(zg,uo), such that the germ F(-,uq) : C*,zo — CP,yo is
not algebraicially transverse to V' at xg. As n < hn(V), this is equivalent to the
restriction of the projection 7 : C"*t4,0 — C4,0 to X (= F~1(V)) not being the
germ of a submersion at (zg, ug)-

Suppose fo : C*,0 — CP,0 has finite Ky—codimension and n < h(V). By
propositions 6.5 and 6.7, if F' is an unfolding of the finite Ky —codimension germ fjy,

the critical sets Cy (F)) for Ky and C} (F) for K}, agree. Also, n|Cy (F) is finite to

def

one. By Grauert’s theorem the direct image of sheaves NKy - F = m (N Ky,un,e - F)
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and NK3, - F &' m,(W KY un,e - F) are coherent. However, these sheaves have
support exactly the Ky and Kj,—discriminants of F'. Hence, the Ky discriminant
Dy (F)) = n(Cy(F)) is an analytic subset of the same dimension as Cy (F) and
similarly for D}, (F')) = w(C}, (F)). Moreover, by proposition 6.7 their images under
the projection 7 agree, so

Dy(F)) = =(Cv(F) = =n(Cy(F) = Dy(F).

Thus, condition (3) of Definition 2.6 is satisfied. It remains to show that X3, is
Cohen—Macaulay, i.e. that NK}, - F' is Cohen-Macaulay with support of dimension
q—1.

Proposition 6.5. Suppose that V,0 C CP,0 is a free complete intersection of
codimension k, with k < n < h(V). Then, NK}, - F is Cohen-Macaulay with
supp(NK}, - F) = D3 (F) of dimension g — 1.

Proof. Let fo : C*,0 — CP,0 have finite Ky —codimension and let F : C"t9,0 —
CP+4,0 be a Ky—versal unfolding of fo. As F is a Ky-versal unfolding of fo,
F:C*, 0 — CP,0,viewed as a map, is algebraically transverse to V at 0. Thus,
If we write V = Vg x C° with T},,Vp = {0}, then X = F~1(V) is diffeomorphic to
Vo x C (and so is also a complete intersection of dimension n + g — k where k is
codimension of V). In particular, it is Cohen—Macaulay.

As V is a free complete intersection with free defining equation H, Derlog(H) is
freely generated by say (1, ..., (—k. By (6.4) NK} - F is an O y—module which

V,un,e
is the quotient of 0%, by the Ox-submodule generated by the n + p — k generators
F F ) .
{g—ml(myu); ey STH(ZU,U), Cl o F(;L',U), ey Cp—k o F(SE,U)}

It has support Cy,(F). Since n > k, n+p — k > p, we apply results of Eagon-
Northcott [EN] extending those of Macaulay—Northcott [Mc] [No], to conclude that
Cy (F) is a subvariety of X of codimension < n+p—k—-(p—1) =n—-k+1
in X so it has dimension > n+¢—k— (n — k+ 1) = ¢ — 1. Moreover, if the
codimension is exactly n — k + 1 (i.e. dimension exactly ¢ — 1), then NKy, - F
is a Cohen-Macaulay Ox—module and Cy,(F') is Cohen-Macaulay.

If dim C5; (F) = g, then so would dim w(Cy (F)) = dim n(C§, (F)) = ¢, implying
w(Cy (F)) is locally onto near 0. However, we can now use the definition of Cy (F)
as supp(NKy,un,e). By the parametrized transversality theorem, there are points
up € C? arbitrarily close to 0 for which F(-,ug) is geometrically transverse to V.
Asn < (MV) <)hn(V), geometric and algebraic transversality agree, see [D2, §3]);
thus, Dy (F) = «(Cy (F)) can not have dimension q. Thus, the dimension is at
most g — 1.

By the above, dim Cy,(F) = dim Cy (F) < ¢ — 1 so it is exactly ¢ — 1. Thus,
the critical set C7,(F) is Cohen-Macaulay of dimension ¢ — 1 and NKY,,,,, . - F is
a Cohen-Macaulay Oy—module. As 7|Cy (F) is finite to one, we conclude ( e.g.
using [Se]) that the direct image under a finite map N'Kj, - F = 7. (VK3 ,,, . - F)
is Cohen—Macaulay as a O Dy ( ry—module and hence as a Ocs—module. Its support
is D}, (F) = w(Cy,(F)) which is, hence, Cohen-Macaulay of dimension ¢ — 1. This
completes the proof of Theorem 4. a

Remark 6.6. We observe that the only two properties of F' which were used in
proposition 6.10 were: that F' : C**¢,0 — CP,0, viewed as a map, is algebraically
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transverse to V, and that generically F(-,uq) is tranverse to V. Thus, for any
unfolding F' with these properties, both C{, (F') and D}, (F') will be Cohen-Macaulay
of dimension ¢ — 1. Hence, this is true for Cy(F) and Dy (F) using the induced
structure.

7. MORSE—TYPE SINGULARITIES FOR SECTIONS OF GENERAL VARIETIES

We extend the notion of Morse—type singularity defined for sections of divisors
to arbitrary analytic germs V,0. We also will see that specific properties which
hold for Morse—type singularities for divisors continue to hold for free complete
intersections.

Definition 7.1. Given V,0 C CP,0 and an integer n > 0, a germ g : C*,0 — C?,0
is a Morse—type singularity in dimension nif g is Ky —equivalent to a germ fo which
has Ky,—codim = 1 and for a common choice of local coordinates, both fo and V
are weighted homogeneous.

Furthermore, we say V has a Morse—type singularity in dimension n at x if there

is a germ g : C*,0 — CP,z which is a Morse—type singularity in dimension n (for
this, we use K(y,,)—equivalence).
Definition 7.2. V is said to generically having Morse—type singularities in dimen-
sion n if: all points on the canonical Whitney stata of V' of codimension < n + 1
have Morse-type singularities of nonzero exceptional weight type; and any stratum
of codimension > n + 1 lies in the closure of a stratum of codimension = n + 1.

We first observe that the normal form established in part I for Morse type sin-
gularities holds for an arbitrary V,0 not just a free divisor.

Lemma 7.3 (Local Normal Form). Let fo : C*,0 — CP,0 be a Morse—type singular-
ity for V,0 C CP,0. Then, up to Ky —equivalence, we may assume V,0 = C" x V5,0
for V5,0 C o4 ,0, and with respect to coordinates for which Vg, 0 is weighted homo-
geneous, fo has the form
n
fo(.’L’l,. - ,ZL’n) = (0, .. ,0,.21'1,. - Tpr—1, Z x?)
Jj=p'

Proof. The proof given in part I does not specifically refer to V' being a free divisor
except at one point and there the reference can easily be removed as follows. The
initial reduction makes no reference to special properties of V. It allows us to
reduce to the case p’ = p and show that fy can be put in the form

(71) fo(.’L‘l,...,{E") = (1’1,...,mp,l,fo(xl,...,xn))

with dfo(0) = 0. Then, in (4.15) of [D6], we explicitly give the generators for
TKv, - fo and make use of the generators of Derlog(V). Suppose instead that we
have a set of generators {(;,i = 0,...,¢} for Derlog(V) with £ > p and with (g
denoting the Euler vector field. By the form of fy in (7.1)

0 0 0
7.2 TKy, - c O — e, —— O my{=—}
( ) Ve fo = C"qo{ayl 6:’/1)71} n{ay }

p
As Ky,e — codim(fy) = 1, we have equality in (7.2). Thus,

0
— € TKve-fo for i=1,...,p—1.
0y;
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Also, the projection of Ty - fo onto Ocn 0{7} Oc» o is mn{ } The Euler

relation and (7.1) imply for the Euler vector field (g
2

Cp)ofo = bpfo € m2

where b, = wt(yp). Hence,

: o}
(7.3) {Gi(yp) o fo,i=1,...,4; an(;

Also, by (7.1), {; € my8, for i =1,...,£. Thus,

(7.4) Gi(yp) o fo € mp 10cn o mod (ms,)

and, by (7.3), must generate this ideal. Thus,

(7.5) {Gyp),i=1,...,£} generate my,_10c o mod ((yp) + mf,)

After this point, the number of vector fields in Derlog(V') is no longer of significance
and the rest of the proof remains the same. a

,j=Dp,...,n} generate my,.

Having established the normal form, the arguments given in part I allow us to
deduce Corollaries 4.20, 4.22, and 4.24 of [D6] for Morse-type singularities for any
V. These three results are summarized as follows.

Corollary 7.4.

(1) If V,0 C CP,0 has a Morse type singularity in dimension n, then it has
Morse—type singularities in the “allowable dimensions”m > p' — 1 where
p'=p—r and r = dim (T;o9(V)o).

(2) Suppose V,0 = C" x Vp,0 is weighted homogeneous with Vy,0 C C?',0 and
(Tiog (Vo) (0)) = (0). Then V' has Morse type singularities in all allowable
dimensions iff there is a weighted hyperplane in CP" which is transverse to
the orbits of Aut;(Vp) in a punctured neighborhood of 0. Here Aut1(Vp)
denotes the group of linearized automorphisms of Vg .

(3) If V,0 C CP,0 has Morse type singularities, then there is a Zariski open
dense subset of X1 consisting of jets of Morse—type singularities (here X1
denotes the 2—jets of germs which are not algebraically transverse to 'V at
0).

Also, just as in the hypersurface case, we say that V with Morse type singu-
larities, has “exceptional weight type”positive, negative, or zero type if V satisfies
(7.5) with -wt(y,) having the corresponding positive or negative sign or = 0. Then,
the next result ensures that having Morse—type singularities is preserved under
products.

Proposition 7.5. If V;,0 C CP:,0 for i = 1,2 have Morse type singularities of the
same non—zero exceptional weight type, then the product V = Vi x V5 has Morse
type singularities of the same exceptional weight type.

Proof. The proof we give for products is actually very close to the proof of propo-
sition 4.29 given in [D6] for an analogous statement for product—unions.

We let p = p1 + p2. We may independently make weighted homogeneous change
of coordinates to factor V;,0 = C™ x Vj,0. Then, the product factors

V1 X ‘/2 = CT1+T2 X (Vio X ‘/20)
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Hence, we may suppose that Ti,, Vi) = (0). Furthermore, we suppose that cpi—t
are the weighted subspaces given by 2) of corollary 7.4. Then, as each V; has
the same exceptional weight type, we may multiply weights if necessary so that
wt(yz(ﬁ)) = wt(y,(,i)) where each V; has coordinates (ygj)) . Then, we consider the
weighted homogeneous subspace

M = (7P x {0}) + ({0} x O 7Y + ((— s —

Now, we claim that M satisfies the conditions of 2) of corollary 7.4 so that V has
Morse type singularities with the same exceptional weight type. The verification
follows exactly the proof of proposition 4.29 of part I, since the vector fields used
there which generate Derlog(V;i WV5) also belong to Derlog(V). O

Remark 7.6. The products of discriminants of versal unfoldings of simple germs or
the products of Boolean arrangements are examples of free complete intersections
which genericially have Morse—type singularities (of positive exceptional weight) in
all dimensions and at any point.

Example 7.7. {0} C CP is a free complete intersection which is a product of the
free divisors {0} C C. Tt has Morse-type singularities of all dimensions, which are
(K equivalent to) the standard X,_,41,0 germs

n
fo(z,...,zn) = ($1,---,$p—1,z-17§)-
j=p

The final property of Morse type singularities that carry over to general V is

the Ky liftability of U, for the versal unfolding F' of a Morse-type singularity in
u

normal form fy from Lemma 7.3

(7.6) F(z,u) = (F(z,u),u) with F(z,u) = fo(z) +(0,...,0,u).
Lemma 7.8. For the Ky -versal unfolding F' of a Morse—type singularity in (7.6)
with nonzero exceptional weight, the discriminant Dy (F') (defined by u = 0) is

reduced and u% is a Ky —liftable vector field.

The proof is exactly as given in Lemma 4.10 of [D6].

8. Ky—DISCRIMINANTS AS FREE AND FREE* DIVISORS

We conclude by briefly discussing the consequences of our results for Ky —discri-
minants Dy (F) of versal unfoldings F for free complete intersections V,0. When V
is a free divisor which generically has Morse-type singularities, the Ky —discriminants
are free divisors. Reexpressed in terms of Theorems 1 and 2, this follows because
genericity of Morse—type singularities for V' implies the genericity of Ky —liftable vec-
tor fields. This together with Ky being Cohen—-Macaulay (for V a free divisor) im-
plies that the module of Ky —liftable vector fields is free and equals Derlog(Dy (F).

Free complete intersections V, 0 still generically have Morse-type singularities in
many cases (e.g. by Proposition 7.5). This still implies the genericity of Ky —liftable
vector fields by the same arguments given in part I using instead Corollary 7.4 and
Lemma 7.8. However, by Example 3.2, we see that the module of Ky —liftable vector
fields need not be free.
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Suppose instead we use the CM-reduction K7, and V generically has Morse—
type singularities (for Ky—equivalence). A sufficient condition for the genericity of
K3liftable vector fields is that for a Morse-type singularity at a point y € V in a
stratum of codimension < n + 1, with the normal form in Lemma 7.3, the vector

field ui is Ky -liftable. This cannot be true in general by Example 3.2, otherwise

u
by Theorem 1, the Ky —discriminant would be free using the module of Ky —liftable
vector fields.

The question reduces to deciding when for a Morse—type singularity in normal

form Lemma 7.3, u2 is Ky —liftable.

We consider the tgvo highest dimensional strata: the smooth stratum, and the
strata which up to diffeomorphism have the form V; x V5 where V7 C CP* is a free
divisor and V4 is smooth. In the second case, we may assume Vo = CP2—F C CPz.
However, Vo x CP2 —% C CP1+P2—F s still a free divisor, so we can reduce to the case
where Vo = {0}. The situation for these cases is given by the next proposition,
whose proof is given in part IIT [D7].

Proposition 8.1. 3) Suppose V,0 C CP,0 is smooth. Then, for any unfolding F,
TKY yun,e " F =TKv,un,e - F. Hence, any Ky —versal unfolding F is K3, —versal, and
all Ky —liftable vector fields are also K3, —liftable.

i) Suppose V.= V; x {0} C CP, where V1,0 C CP*,0 is a free divisor and
p = p1 + po with py > 0. Then, for a versal unfolding of a Morse—type singularity

in normal form (Lemma 7.3), u— is not K3, -liftable.

Ou
When V,0 is smooth, the Ky —discriminant is exactly the Kj,—discriminant by
Proposition 6.2. By Proposition 8.1, a Morse—type singularity at any point of V
also has u—— K3, liftable. Thus, by the argument of part I, we have genericity
of K3, -liftable vector fields. Hence, Theorem 1 implies the Ky —discriminant of a
versal unfolding is a free divisor, recovering the result of Looijenga.

Corollary 8.2 ((Looijenga [L])). If V is smooth, the Ky—discriminant for the
versal unfolding is o free divisor. In particular, the discriminant for the versal
unfolding of an ICIS is a free divisor.

We note the second part of Proposition 8.1 essentially implies that Example
3.2 is the typical state of affairs; and we will not generally have freeness of Ky —
discriminants. Except for ICIS singularities, we must settle for free* divisors.
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