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Abstract. In deformable model segmentation, the geometric training process
plays a crucial role in providing shape statistical priors and appearance statistics
that are used as likelihoods. Also, the geometric training process plays a crucial
role in providing shape probability distributions in methods finding significant
differences between classes. The quality of the training seriously affects the fi-
nal results of segmentation or of significant difference finding between classes.
However, the lack of shape priors in the training stage itself makes it difficult
to enforce shape legality, i.e., making the model free of local self-intersection or
creases. Shape legality not only yields proper shape statistics but also increases
the consistency of parameterization of the object volume and thus proper appear-
ance statistics. In this paper we propose a method incorporating explicit legal-
ity constraints in training process. The method is mathematically sound and has
proved in practice to lead to shape probability distributions over only proper ob-
jects and most importantly to better segmentation results.

1 Introduction

Image segmentation, the main target problem of this paper, is an important task upon
which many other medical image processing applications are based. The goal is to de-
lineate image regions corresponding to certain anatomical structures from the back-
ground. Deformable model based methods tackle the segmentation problem by repre-
senting anatomical objects with geometric models and deform them into images via
object shape and object-relative image intensity information. Shape and intensity statis-
tics have been used respectively as priors and likelihoods in segmentations and have
become a standard component in deformable model methods. In order to get trained
statistics, we need to extract deformable models from a set of training images and cal-
culate shape statistics and related appearance statistics from the trained models. This
process of extracting models and calculating prior and likelihood statistics is called
training.

Given a set of segmented images, a typical training step includes converting those
segmentations into deformable models in a specific representation. The conversion is
often realized by fitting a deformable template into a batch of binary characteristic im-
ages typically produced manually from the training greyscale images. Therefore the
training step is also a fitting process but without any shape prior statistics. The lack of
priors in training can cause illegal shapes, with local self-intersection or creases, which
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will yield unrealistic shape statistics and then defected appearance statistics relative
to objects coordinates. Even in an iterative bootstrapping process [4]] the results from
the first pass training affects the final ones after multiple passes. Existing solutions to
this challenge require humans to directly enforce smoothness on extracted deformable
models [3]]. This approach is time consuming and defeats the purpose of having an au-
tomatic training step given the binary images. Furthermore, human interferences might
bring undesirable biases in the trained shapes and thus in the trained statistics.

In our framework, the deformable model is medial based. It has been argued that
medial based models have strong descriptive power because they capture not only lo-
cal positional information but also local orientational and size information [[11]. Medial
methods represent and parameterize both object surfaces and interior volumes. A par-
ticular strength of this representation is that powerful mathematics exists on the relation
of the medial geometry and the geometry of the implied boundary and interior of ob-
jects [S)]. In this paper we use this mathematics to provide a set of geometric constraints
that can be explicitly applied to our deformable models in order to maintain the legality
of the surfaces and interiors of the trained shapes.

The proposition this paper is designed to establish is that attention to model legal-
ity in fitting the models used in forming proper statistics on object geometry and on
object-relative image intensity patterns is decisive for the quality of applications of the
probability densities derived from the training process. Recall that achieving such le-
gality by automatic means in Point Distribution Models (PDMs) of object boundaries
required mathematics and serious computation [1]. The mathematics now available on
medial representations lowers the computation necessary to assure legality from that
required for PDMs.

The rest of the paper is organized as the follows. Sec. [2| covers background on the
deformable method using a medial representation and medial mathematics. Sec. |3|de-
tails the proposed method for achieving medial legality and proper statistics in training.
Sec.[]shows how we generate synthetic test data and the results from application of our
method to both synthetic and real world data. Sec.[5]concludes the paper.

2 Background

We begin with a brief review on deformable model based methods and medial repre-
sentations. We then address some mathematical background necessary for the detailed
description of the proposed method.

2.1 Medially Represented Deformable Model

Deformable models are probabilistic shape descriptions. Under the Gaussian model,
the distribution of the training data is modeled by several modes of deformation about
a point in the shape space. This distribution describes all shapes in the training data and
moreover, for a sufficiently large training set, estimates the full ambient shape space
from which the training data are drawn. This statistical framework has been shown [[12]
to provide a powerful basis for studies finding shape differences between classes of
shape or, together with probabilistic models on image appearance via object-relative
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intensity patterns, to provide a powerful means of segmentation by posterior optimiza-
tion.

The classical model representation is landmarks or its extension to surfaces, the
point distribution model (PDM) with shape variance described by principal component
analysis (PCA) of the feature space [3]. PDMs assume feature correspondence by fixed
sampling, or attempt to induce correspondence post hoc by minimizing variability in
the parameterization [7]. While it is possible to provide local legality constraints with
such boundary representations, the literature shows little attention to this issue, perhaps
because legality checks require extracting information about surface normals. Another
surface representation uses spherical harmonic (SPHARM) basis functions, which guar-
antees local shape legality at serious computational expense but handles surface locality
with difficulty. Legal PDMs can, however, be derived from the SPHARM fits to training
images [[13].

Our segmentation and shape analysis methodology uses the multi-scale discrete m-
rep representation proposed in [11]. Medial representations provide a model-centric
volumetric coordinate system for the object interior and hence, a framework for volu-
metric correspondence. As described in Sec. the mathematics of m-reps based on
[S] provides the means for legality guarantees over the whole object interior.

RN

Fig. 1. From left to right: an internal atom of two spokes S™* and S™*, with 7 to param-
eterize the object interior along the spokes; an end atom with an extra bisector spoke
S%; a discrete m-rep as a mesh of internal atoms (with white hubs) and end atoms (with
red hubs); an interpolated spoke field on a smooth medial sheet (in dark blue).

An m-rep figure is a mesh of samples of an object’s medial axis, as shown in Fig.
Each internal medial sample, or medial atom m = (p,r, U™, U™') € M = R? x
R* xS8?% x S? has eight parameters: 3 in hub position p, 4 in two medial spoke directions
U+1/_1, and 1 in scale r.

In order to have more stability in the representation, each end atom can be con-
sidered as the compound of an internal atom {p,r, UT', U~*} plus the bisector spoke
corresponding to the crest line on the object boundary. The hub position and two regu-
lar spokes St/ of each end atom are treated as one internal atom. An interpolation
method can be applied to an m-rep to generate a continuous medial representation as a
smooth double-sided spoke field [[10], and the interpolated hub positions forms its own
smooth surface called medial sheet, shown in dark blue in Fig. [T}rightmost.

Given that each atom lies on a Riemannian manifold [9], the distance between two
atoms, d(m, 0), is derived by a local flattening Log-map defined to map points on the
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manifold to the local tangent plane. This leads to a Riemannian distance d(m, o). The
squared distance between two m-rep models M and O with samples m; and o; respec-
tively is defined as the sum of the squared distances between corresponding samples
d*(M,0) = >, d*(m;,0;). These metrics allow for the extension of PCA into non-
Euclidean domains such as m-reps [9].

The medial atom is the basic building block in m-rep representation, and the deriva-
tives of the medial sheet and the two spoke directions in each medial atom contain
sufficient information to tell whether any illegal shape exists or is about to appear [3].
The next subsection reviews the mathematics that enable us to put legality constraints
on m-reps, detailed in Sec. @

2.2 Radial Shape Operator S,..q and 7S,.44

Differential geometry reveals how a surface normal curves in its local surface tangent
plane. The derivatives of surface normals can be summarized by a 2 X 2 symmetric
matrix called the shape operator. Analogously, the radial shape operator (3] tells how
a medial spoke changes while walking on the medial sheet. Since each m-rep atom has
a spoke on both sides of the medial sheet, the spoke field on the medial sheet should be
considered as double valued. Thus there are two radial shape operators defined for each
atom: one for each side of the medial sheet.

Let us only consider one side of the medial sheet since the same method applies
to the other. Assume that there is a continuous spoke field S(u) with unit length spoke
direction U(u) and spoke length r(u) on the continuous medial sheet p(u), where u =
(v1, v2) parameterizes the 2D medial sheet and the spoke field. S(u) = r(u) - U(u). The
derivatives of the unit length spoke direction U(u) wrt (v1, v2) are calculated as follows,
with Uandp,, ,,, being 1 x 3 row vectors.

ou
81)1-

or rewriting in matrix form,

ou _ (ao_;) U-— <a1,1 a1,2> (Pm) )
Ou Qo2 a2.1 02,2 ) \Py,

where 2Y is a 2 x 3 matrix with row i as the vector % and p,, and p,,, are the derivatives
of the medial sheet p wrt parameters v; and v. In these equations, the derivative of U
is decomposed by a generally non-orthogonal projection along the spoke direction U to
the tangent plane of the medial sheet spanned by p,, and p,, .
Let Ay = (ao,1) and S,qq = <a1"1 a2‘1>. Sraa is called the radial shape operator.
ao,2 a2 a2
The radial shape operator is a 2 x 2 matrix and in general not self-adjoint.

Then (2)=
— =A,U-S V1 3
7 u rad <pv2> (3)

= CLQ,,‘U — ai,lpvl — ai,gpw, where i = 1, 2, (1)

0

U(u) is of unit length, 2 - UT = (0

) and U-U7” = 1, so by [3]]-Sec.2



Geometrically Proper Models in Statistical Training 5

Ay =ST, (g) u” )

Substituting (4) into li yields the means of computing S,..4 given ‘Z—E, U and (pm) .
That is, S,..q depends on the spoke direction U, and the derivatives of U and p. ’
Furthermore, the derivative of S = rU can be expressed using rS,,4 and elementary

linear algebra [[12]-Ch.3. An explicit matrix expression for rS,,4 is obtained as follows.

oS o(rU)  ou Ty
du  du _T8u+(7“u2>U ©)
Substituting (3) and () into (3] yields
IS _ .7 [Py, T Tuy
ou N TST'ad (pvz) (U v I) - v2 v (6)

The spokes being orthogonal to the boundary formed by their envelope requires [3]]

that ry, /v, = —p,,, ., U" . Let Q = <g“1> (UTU — 1) be a 2 x 3 matrix. Then

v2

gl .
rSrad = <(gs + (p“ T) U) QT(QQT)l) ™
p,,U

shows how to compute rS,..4 given the derivatives of p, U and S wrt (vy, v2).

Analogously with calling the eigenvalues and eigenvectors of the shape operator
at a surface point the principal curvatures and principal directions, Damon named the
eigenvalues of the radial shape operator S,.q the principal radial curvatures k,;,i =
1,2, and he named the eigenvectors the principal radial directions [3].

Considering a local radial flow from the medial sheet p along one of the two spokes
S to the implied boundary as ¢(p,t) = p + tS,¢ € [0, 1]. © can be generalized to a
global radial flow via the doubled-sided spoke field on the medial sheet. The spoke field
is legal if and only if the Jacobian matrix of the global radial flow ¢ is never singular.
This implies that for a legal spoke field, i.e., one free of any intersections among the
spokes, it has to fulfill a legality condition [5]:

Ari < 1, where \.; = rk,;, for all positive real eigenvalues A,; j—1,2 of rS;qq. (8)

This relatively simple legality condition can be converted into a geometric constraint
in our training process, which allows direct control on the legality of the model interior
and implied boundary. We will talk about our training process in general and then come
back to how to use this legality condition explicitly in the training.

3 Method

3.1 Binary Training

As described in the introduction, the binary training starts with a fitting process. The
task for binary fitting is to find the best member of the shape space for each binary
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training image. Members of the shape space are parametric models, M, with implied
surfaces (2. Training images, I, are expert binary segmentations of 3D patient data, each
with boundary voxels B. We want to find the best M for a given I: arg minw Fop; (M|I).
The objective function Fyp;(M|I) is the sum of two parts: the data match measures the
fit of M to data including the image I and image landmarks, and the geometric penalty
measures the geometric appropriateness of M. The data match has two terms, the image
match term F},,, and the landmark match term Fj,,,.

3.2 Data Match

Image Match F},,, enforces that the surface implied by model M is in accordance
with the boundary voxels B, in the binary image. We define the image match as an
integral over B of the minimum distance to the implied model surface {2 as the follows.

Fimg(M,T) o< Y~ min(d?(b;, 2(M))) ©)
b; €B(I) «“

In our current implementation, {2 is generated via a modified Catmull-Clark algo-
rithm with additional normal constraints [[14]]. Ideally, we want to measure the distance
of the label boundary surface from the model, d?(B, §2). However, this is computation-
ally expensive given finely sampled subdivision surfaces required for accurate matches
and the large number of candidate surfaces generated during optimization.

Furthermore, we note that when B and (2 are very close, the distance function is
nearly symmetric, |d(B, £2) —d(f2,B)| < e except when in a neighborhood the normals
of B and {2 strongly differ. So we simplify by approximating our ideal function with
the more tractable d({2, B).

In implementation, we generate a single space filling lookup table for distance from
the label boundary by Danielsson’s algorithm [6]]. Trilinear interpolation gives a very
fast measure of the distance at any point in space to the closest boundary point on
B. Then we let d(w;,B) be the lookup of the position of w; in the distance map and
d(£2,B) =3, cod(wi,B).

At a boundary location where the surface normal differs from the distance gradi-
ent, i.e. the normal to {2, by more than a certain threshold, d(w;, B) is replaced by the
distance along the surface normal to the nearest binary boundary location on B.

Thin object regions also pose a challenge for the image match term. An advantage of
the m-rep parameterization is that the medial skeleton can be thought of as the limiting
case of a morphological erosion. This allows us to segment very thin object, the image
of which is less than a voxel in thickness. We fit an initially dilated model to a dilation
of the initial binary labels in the training image, and then we contract the model surface
by the same amount via an inverse scaling of the spoke length (radius) parameter.

Landmark Match Fj;,,, allows for identified explicit feature correspondences. An ex-
pert may identify a few anatomically important and easily identifiable landmarks in the
training image population, and we penalize the distance from a medially specified point
on the model to these landmarks images. Each image landmark LI; identified in I has a
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real tolerance value ¢; that reciprocally weights the associated distance to the specified
model point.

In detail, landmarks LM in an m-rep model M are identified as spoke ends of medial
atoms. Corresponding image landmarks in the image data I are identified as points in
image volumetric space. In our implementation, the Euclidean squared distance from
the corresponding spoke ends to the image points is computed and summed, weighted
by individual confidence factors 1/¢?:

1
Fum(M,T) o< Y~ —d*(LM;,LL) (10)
LM;cLM %

3.3 Geometry Penalty

Besides the measure of the dissimilarity between the model and the image data, we also
put geometric constraint on the shapes to measure the appropriateness of M.

The geometric penalty typically penalizes parameterizations that lead to irregular
coverage of the boundary implied by M, via the irregularity penalty F}..q. We argue
that it should also include a term to penalize illegality of the interior and boundary
implied by M, which will be detailed in Sec.

Irregularity Penalty The irregularity penalty F).., of a discrete structure, such as a
discrete m-rep may reasonably measure the deviation of every atom from the average
of its symmetrically placed neighbors. This term penalizes non-uniform spacing and
changes in spoke length and direction of medial atoms. It contributes to proper object
geometry and to correspondence across the training cases. For each medial atom m,,
the regularity is calculated as the squared Riemannian distance between m; and the
Fréchet mean of its neighboring atoms N(m;), where the Fréchet mean is defined as
FMean({o;}) = argming, y_, d?(m, 0;) [9]. The penalties are then accumulated for
all the medial atoms of the object:

Freg(M) o Y _ d*(m;, FMean(N(m;))) 11

i=1

3.4 Incorporation of 7S, 4 into F,;; as a Geometric Penalty

As described in Sec.[2.2] a fulfilled legality condition guarantees there is no local self-
intersection or creases in a medial spoke field. In order to use the condition as a geomet-
ric penalty on a discrete m-rep, we need to calculate the rS,.,4 matrix and its eigenvalues
Aris @ = 1,2 first, and design a function Fj.4(A.;) as the illegality penalty.

Calculating 7S,.,4 According to , rS,aq can be calculated from the derivatives of
the medial sheet p and spoke S.

We calculate the derivatives of the medial sheet and spoke by the finite differences
between neighboring atoms. r'S,.4q is then calculated by (7). Eigen-decomposition is
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applied to the rS,.,4 to get both the eigenvalues \,;. Recall that the spoke field is double-
sided on the medial sheet, and thus there are two S, ,4 matrices and corresponding four
eigenvalues for each medial atom.

1600, A Sample Tllegality Penalty Function fi.e

/
- 10 05 00 05 10 15 20 25 3.0 35
Fig. 2. Left: gradual formation of a self-intersection on a surface portion, rendered by
the maximal A, of corresponding spokes to surface points. Blue/red means legal(\, <
0)/illegal(A,, > 1) and any intermediate color shows the tendency for corresponding
surface points to become illegal; Right: a sample illegality function f., as a cubic
Hermite curve.

Fig. 2} Left shows a visualization of ), on the implied boundary of an m-rep. A,
serves as a distinct indicator of local shape illegalities. Next we show the design of a
penalty function on A, that will be used in the illegality penalty.

Illegality Penalty Recall that in (8], legality holds i f f A,; < 1 for all real eigenval-
ues of rS,,4. Theoretically it is a binary condition that the sign of A\,; — 1 determines
the legality of the implied boundary. However, in practice smaller \,; desirably leads
to smoother surface and binary fit. In order to incorporate this into the objective func-
tion Fyp; (M|I) as a penalty term, we define a smooth function fieq(\,;) that has the
following properties.

1. Strictly monotonically increasing;
2. Does not penalize negative \,;;
3. Increasingly penalizes when A,; > 0 approaches or passes 1.

Ideally fie4 should approach co when A,; approaches 1. In practice we choose ficq
to be smooth at \.; € [1,00] in order to simplify the gradient-based optimizations on
the objective function. We use a cubic Hermite curve to define fj., with the luxury
of freely picking the function slopes at desired control points, which in our case are
Ari =0, 1. A cubic Hermite curve is C? continuous.

A sample fic4 is shown in Fig. Right. The penalties of all n atoms’ A,; in an m-
rep M are then summed up and combined into the objective function F,p;(M|I) as an
explicit illegality penalty Fj, for training.

FregM) o< 3 fueg(A(my),) (12)

i€[1,4];5€[1,n]
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The objective function for binary training is then defined as

Fopj(M|I) = aFimg(M,I) 4 BFjim (M I) + vFpcg(M) 4+ 0Fjeg(M)  (13)

where a, 3, 7, d are the parameters controlling the relative weights of the penalty terms.

As anormalization, the binary image I is uniformly scaled into a unit cube before the
fitting process, and thus the calculated values of the four penalty terms are unitless. The
binary fitting starts with a gross alignment step typically via a similarity transformation
implied by the moments of the model and binary volumetric image, followed by an
optimization on the objective function over m-rep parameters.

After fitting the deformable template into all binary images, the shape statistics
are calculated by the Principal Geodesic Analysis (PGA) [9] on the fit models. The fit
models are mapped back to their corresponding grayscale images, which are divided
into regions using model coordinates provided by m-reps. Intensity histograms are then
collected and converted into Regional Intensity Quantile Functions (RIQFs) [2]. PCA
is applied to the RIQFs to form the appearance statistics. The PGA shape statistics and
the RIQFs appearance statistics form the trained statistics that are used in applications
such as segmentation or shape discrimination.

This paper focuses on image segmentation. We show some training and segmen-
tation results based on the methods we proposed, using both synthetic and real world
data. The synthetic binary images are generated by warping a standard ellipsoid by dif-
feomorphic deformations, and the real world data are male pelvic CT images. The next
section starts by describing the generation of the synthetic data and ends with results
of training on both synthetic and real world data and segmentations on male pelvis CT
images of prostates and bladders.

4 Results

Adding an illegality penalty has led to better model fits hence to better statistics on
geometry and intensity patterns. Our experience is that this led to considerably better
segmentation results, indeed ones so good that on bladder and prostate segmentation
from CT images the computer results compared to the manual segmentations by the
human who did the training were closer than another human’s manual segmentations
were to the trainer’s.

4.1 Synthetic Data

We applied a diffeomorphic deformation to the ambient space R? in order to gener-
ate the synthetic ellipsoid models. Given the implicit form for the original ellipsoid
2—2 + Zé—z + i—j < 1, the ambient diffeomorphic deformation is defined as: 7 = x;y/ =
(y co8(prwistT) —2 SIN(ppapistx) ) ePtorer®; 21 = (y Sin(ppuwistT)+2 COS(Prwist®) ) ePtarer®+
Pvend?, where Pbends Pwist, Praper are three independent normally-distributed vari-
ables that control the three types of deformations: bending, twisting and tapering, as
shown in Fig. B}Left. The standard ellipsoid gives an initial binary volumetric image



10 Authors Suppressed Due to Excessive Length

to start with. By sampling three normal distributions we get a set of the three values.
We then apply the deformation based on each set of {pyend, Prwist, Ptaper + to the initial
binary image and get a warped binary image. By this means we get a set of 150 sample
binary images of warped ellipsoids.

Average Surface Distance of
0.65| Ellipsoids Fit with Legality (mm)

Bending

Twisting

Tapering

009

0 50 100 150

Fig. 3. Left: warped ellipsoids by three deformations of bending, twisting and tapering.
Each deformation is shown as -2\/0/+2\ away from the mean; Right: fitting results
of 150 sample images shown as the average surface distances from model to binary
boundary.

For each sampled binary image, landmarks are also picked automatically as the four
extreme points on the middle section of the ellipsoid boundary, plus two vertices at the
two warped tips. A template model was generated by sampling the medial axis of the
standard ellipsoid. The template was then fit into all the sample binary images using
our binary fitting with the geometric illegality penalty. In this study we only measure
the quality of the binary fit in term of the average surface distance between model and
binary boundaries. Since the synthetic binary images are generated independently from
our medial representation, this study serves as a consistency test on our fitting method.
The fit results in Fig. B}Right show that the m-rep surface is on the average, over the
boundary, closer than one voxel from the binary boundaries as the truth, while the three
axes (a, b, c) of the original ellipsoid are approximately (50, 30, 23) voxels in the binary
image. Furthermore in some test cases, our proper training shows more robustness by
providing good fit shapes that we failed to get without the illegality penalty. Next on
real world data, we will show both training and segmentation results.

4.2 Real World Data

We used CT images (1 x 1 x 3mm) of prostates and bladders from 5 patients (80
images) as the real world test data. Each patient has from 13-18 images from multiple
days. For each patient, we successively left each day out, trained on all remaining days
using both our proper training method and the training without legality constraints, and
segmented the left-out day image using the trained shape and appearance statistics from
both training methods from all other days. The results show that the trained shapes not
only have smoother surfaces (Fig. @} Left) but also fit better (Fig. @} Right) into the binary
images. The robustness that our proper training process provides allows us to get good
fits even from the images that we failed to fit without the legality constraint.
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Sorted statistics over all 80 images are given in Fig. [} Right. For comparison, m-rep
fits to humans average 93%, and the average agreement between two humans’ segmen-
tations of 16 prostates is 81% volume overlap and 1.9mm average closest point surface
separation. For the majority of cases, the segmented results for both the bladder and
prostate were judged qualitatively good.

1
Prostate Volume Overlapping (%) Bladder Volume Overlapping (%)

Training without legality Training without legality
0.85] &= Training with legality =&=Training with legality
Leave on-day-out without legality 0.8] Leave one-day-out without legality
e~ Leave on-day-out with legality =e=Leave one-day-out with legality
08 0.75
0 20 40 60 80 o 20 40 60 80
2.5 6
rosate Average Surface Distance (mm) Bladder Average Surface Distance (mm)
2| Training without legality 5 Training without legality
=4=Training with legality ~&=Training with legality
Leave one-day-out without legalit 4 Leave one-day-out without legality
1.5 =e=Leave one-day-out with legality =e=|_eave one-day-out with legality

1]
LY
0.5 !
0 20 40 60 80 00 20 40 60 80

Fig.4. Left: sample trained shapes from training without/with legality constraints,
shown in the left/right column; Right: sorted measures (volume overlapping as Dice
similarity coefficients [8] and average surface distance in mm) comparing m-rep seg-
mentations (circle) and trained m-reps (triangle) to human segmentations, using training
methods without (yellow) and with (blue) illegality penalty.

5 Conclusion and Future Work

The results in Fig. ] suggest that the segmentations results based on our proper training
process are improved from the results based on training without illegality penalty. Our
training process incorporated with the legality constraint helps us to get proper shape
and appearance statistics and lead to segmentation results that are as good as human
segmentations. This shows that our method is not only mathematically sound but also
proves in practice to improve segmentation results.

In the current implementation, we use adapted Catmull-Clark subdivision to gen-
erate the implied boundary used in the training, and legality constraints are applied to
sample medial atom spokes. A medial spoke interpolation method is also being
adopted to generate both a smooth spoke field and implied boundary, which can further
improve the legality of the interior and boundary of trained shapes. We are also working
on extending the same framework to train models for anatomical objects with multiple
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parts, such as livers and hearts. Application of the properly trained shape statistics in
methods finding significant differences between classes is in progress.

6
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