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Abstract

We consider surface singularities in C arising as the total space of an equisingular deformation
of an isolated curve singularity of the form f(x, ¥} +zg(x, ¥) with f and g weighted homogeneous.
We give a criterion that such a surface is a free divisor in the sense of Saito. We deduce that the
Hessian deformation defines a free divisor for nonsimple weighted homogencous singularities, and
that the failure of this property “almost™ characterizes the simple singularities. The criterion also
yields distinct deformations of the same curve singularity, exactly one of which is free, showing that
freeness is not a topological property. © 2002 Elsevier Science B.V. All rights reserved.
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Introduction

Saito [14] introduced the notion of free divisor V, 0 < €#, 0 as a hypersurface for which
the module of logarithmic vector fields Derlog(V) is a free Ocr-module (necessarily
of rank p). Most examples have concerned universal objects such as: the discriminants
of the versal unfoldings of isolated hypersurface and complete intersection singularities
by Saito [14] and Looijenga [12, Chapter 6]; bifurcation sets associated to the versal
unfoldings of isolated hypersurface singularities, Bruce [4] and Terao [16], and more
generally for A-versal unfoldings of a well-defined class of complete intersection germs [5]
and see references therein; Coxeter arrangements, by Terao [15]: the discriminant of the
versal deformation of a space curve singularity, by Van Straten [18); creating free divisors
from images of stable germs by adding either adjoint divisors Mond {13] or other natural
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divisors [5]; and more generally discriminants of Ky-versal unfoldings of sections of
certain free divisors [5,6], which subsume many of the preceding.

If we seek to identify and understand free divisors which fall outside such classes of
universal objects, there are only two known special results, One concerns special free
divisors arising as hyperplane arrangements, using a criterion of Terao [15], including
special discriminantal arrangements, Falk [10], Bayer and Brandt [2,3]. A second general
result of Saito [14] shows that all isolated plane curve singularities are free divisors.
Unfortunately freeness fails for all higher dimensional isolated singularities. For example,
isolated surface singularities V', 0 ¢ €2, 0, require at least four generators (see, e.g., [111).

The purpose of this note is to consider a general class of surface singularities in C3 and
characterize by simple conditions those which are free divisors. Consider a nonisolated
surface singularity X, 0 ¢ C?, 0 with singular set a smooth curve. If we intersect X with a
plane transverse to X (as a Whitney stratified set) we obtain an isolated curve singularity
X0, 0, and X can be viewed as the total space of an equisingular deformation of Xg, 0. We
consider when such equisingular deformations have a total space which is a free divisor.
We shall concentrate on equisingular deformations of weighted homogeneous curve
singulatities of the form F = f(x, y) + zg(x, y) with z the deformation parameter and g
also weighted homogeneous with wi(g) = wt(f). We shall give a necessary and sufficient
condition that such a deformation defines a free divisor in terms of a homomorphism

¥ : Derlog(F) — (J(): &),

where Derlog(F) denotes the module of logarithmic derivations which annihilate F and
J(f)is the Jacobian ideal of f.

We shall see that the image Im(¥) C (J(f): g) represents first order information
regarding the logarithmic derivations of X. Our first theorem characterizes free divisors X
in terms of algebraic and numerical properties of Im(¥). An important special case occurs
when all of the elements of (J{f): g) lift via ¥ to logasithmic derivations (we refer to
¢ as being fully extendable). We give a simple numerical condition (Proposition 2) which
ensures this, In this special case, Theorem 3 gives a necessary and sufficient condition
in terms of the ideal (J(/): g) for X to be a free divisor. As a first consequence
we deduce that Hessian deformations of nemsimple (weighted homogeneouns) curve
singularities always define free divisors. Second, we are able to exhibit distinct equisingular
deformations of the same curve singularity, one of which is free and the other not free. As
the surfaces are topologically equivalent, this shows that freeness is not a purely topological
notion. This contrasts with the situation for arrangements where Terao has conjectured that
whether the arrangement is free is determined by its lattice structure.

Moreover, all of these equisingular deformations have smooth singular set. This
contrasts with the result of Alexandroff, Theorem 1 in J1] which characterizes the freeness
of a divisor X, 0 for which Sing(X) has codimension 1 at all points in terms of Sing(X)
being Cohen—Macaulay. Since smooth sets are Cohen—Macaulay, these results seem o
contradict the theorem of Alexandroff. In fact, there is some “fine print” in Alexandroff’s

" theorem which asserts that Sing(X) being Cohen-Macaulay concerns a specific associated
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ideal structure rather than the intrinsic geometric structure. Our examples show that the
intrinsic geometric structure does not by itself determine whether X, 0 is free.

Finally, from the results on Hessian deformations one might suspect the freeness of the
Hessian deformation characterizes nonsimple weighted homogeneous curve singularities.
This is almost true. In fact we show there are exactly two simple singularities whose
Hessian deformations define free divisors: the simplest singularity A; (whose Hessian
deformation x2 + y2 4 z defines a smooth surface which is trivially free) and the “most
complicated” simple singularity Eg.

1. Freeness of surface singularities

Let f(x, y) define an isolated weighted homogeneous curve singularity Xg, 0 < €2, 0.
We let wi(x, y) = (a, b), wt(f) = d (so a, b, d > () and let J(f) denote the Jacobian ideal
of f. Also, we let g(x, y) be a weighted homogeneous germ. We consider the deformation
of f given by F(x,y,2) = f(x,y) + zg(x, ). If wt{g) = 5 > wi(f), then F defines an
equisingular deformation of f. If we view F as a function of three variables, it defines,
in general, a nonisolated surface singularity X = {(x,y,2) € C> F(x,v,2) =0LIf F is
an analytically trivial deformation, then X =~ X x C is a free divisor. We determine more
generally when F defines a free divisor.

First, F is weighted homogeneous if we assign the weight wt{z) = ¢ =d — 5. If
wit{g) = wt{f}, then wt(z) < 0. Even with nonpositive weight for z, there is the Euler
vector field e = ax8/9x + by3/8y 1 cz8/8z. Also, a basic object of interest is the module
of vector fields annihilating F. '

We let fp denote the module of germs of vector fields on C?, 0. Quite generally recall
that for X, 0 C CF, 0 a hypersurface, the module of logarithmic vector fields is defined by

Derlog(X) = {¢ <8, t{1(X)) € 1(X)},

where /(X) denotes the ideal of germs vanishing on X, 0. Then, X, 0 is a free divisor
if Derlog(X) is a free Og» p-module, necessarily of rank p. If F is a reduced defining
equation for X, 0, we also define

Derlog(F) = { €6,: {(F)=0}.
Then, it is easily seen, e.g., by [9, Lemma 3.1],
Derlog(X) = Derlog(F) @ Ocr ofe}.

Hence, in the special case where X, 0 C €3, 0 is a surface singularity, Derlog(X)} is a free
Ogs g-module of rank 3 iff Derlog(F) is a free Oga g-module of rank 2. To determine
when this is true, we consider the homomorphism

@ : Derlog(F) — (J{f): &) — (1.1
defined by ¢ = £(2)|;—0. To see that ¥ maps to (J(F): g}, let ¢ = ay(x,y,z)o/ox +
az(x,y,2)d/8y +as(x, y, z)a/az. Then,

. oF _ oF ' oF
((Fy=ai(x,y, )~ + oy, 20— +aslx,y, 2} — =0. (1.2)
dax dy oz
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Since 0F/dz = g, if we evaluate (1.2} at z = 0 we obtain a3{x, y,0) - g € J(f). Also,
£{2)jz=0 = a3{x, y, (), so the map is as defined.

We note for later use that ¥ increases weight by s — d and is a module homomorphism
over the ring homomorphism i*: Ops § > Oz, for i(x,y) = (x,,0). As the ring
hkomomorphismis sucjective, Im('¥) is an ideal in. Oz . We further note that the definition
of ¥ extends to Derlog(X); however, Ocr ple} would always be in ker(¥) so we instead
restrict consideration to ¥ as defined in (1.1). However, in this more general form we
can view ¥ as identifying first order information of a logarithmic derivation. We will see
precisely how this limited information actually determines the freeness of X, 0. _

The main criterion characterizing when F defines a free divisor is given by the following
which also applies to non-equisingular deformations.

~ Theorem 1.1. Suppose that f(x,y) defines an isolated weighted homogeneous curve sin-
gularity in C2, 0. Also, let g(x, v) ¢ J(f) be aweighted homogeneous germ. Then the sur-
face singularity X, 0 C 3,0 definedby F(x, v, 2} = f(x, ¥)+zg(x, y) is a free divisor iff:
(1) Im(¥) is a complete intersection ideal generated by weighted homogeneous gener-
ators {hy, ko) such that
(2) wt{g) +wt(h1) + wt(hy) =2d —a — b.

As we did in Theorem 1.1, in all of the results that follow we assume that f (x, v) defines
an isolated weighted homogeneous curve singularity in C?,0 (with weights as already
given).

For the theorem to be useful we wish to identify Im(¥) without first determining
Derlog(F). We do this in an important general case. -

~ Definition 1.2, Given f, we shall say that g is fully extendable if for the deformation
F = f +zg, the map ¥ is surjective.

Remark 1.3. If ¥ = f + zg is analytically trivial (for right equivalence), then since
J{(fi=TR, f, we conclude g € J(f). Moreover, differentiating the equation for the
analytic triviality F = f o ¢ withrespectto z yields 3F/dz = ¢ (F) for ¢ = a1 (x, y, 2} x
3/8x +ax(x,y,z)8/0y. Hence, { = -’ +8/8z € Derlog(F). Thus, L = & () and hence
¥ is onto.

Conversely if g is fully extendable (for f) with g € J(f), then 1 € {(J(f): g). Then, g
being fully extendable allows us to reverse the previous argument to solve the infinitesimal
equation for analytic triviality dF/3z = ¢'(F). Thus, F is analytically trivial. As the
freeness of analytically trivial deformations holds, if g is fully extendable we need only
consider the case g ¢ J{f).

A sufficient condition ensuring that a germ g is fully extendable is given by the
following.

Proposition 1.4. Suppose the curve singularity defined by f(x,y) is nor a simple
singularity. Also, let g(x,v) be a weighted homogeneous germ with wt(g) = wt(f).
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Suppose that there is a set of weighted homogeneous generators (hy, .. ., hy) of (J{(f): g)
which satisfy
2wi(g) + withi) > 3d —2(a+b) fori=1,...,k (1.3)

Then, g is fully extendable.

We shall prove this proposition in Section 2 after we have deduced several consequences.
First, we note that in the case g is fully extendable Theorem 1.1 takes the following
form. '

Theorem 1.5. Suppose that g(x,y) is a weighted homogeneous germ which is Jully
extendable for f. If the surface singularity X,0 C C3, 0 defined by F{x,y,2)= flx,y)+
zg(x, y) is not analytically trivial, then X, 0 is a free divisor iff
(1) (J(f): g) is a complete intersection ideal generated by weighted homogeneous
generators {hy, ha} such that
(2) wt(g) +wt(h) + wttha) =2d —a — b.

The first consequence of the theorem is for Hessian deformations. Consider the Hessian
of £, H{x,y) =det(d* f/dx;0x i) with (x1, x2) denoting (x, y). The Hessian deformation
of fis given by F(x,y,2) = f(x,y) +zH{x,y). If fisnota simple singularity, then
wt(H) =2(d —a — b) 2 d, so d > 2(a + b). Then, (H: J(f)) is generated by {x, v},
and

2wt(H) +min{wi(x), wi(y)} = 3d —2(a +b) + (d — 2(a + b) + min{a, b))
> 3d —2(a+b)

so by Proposition 1.4, H is fully extendable for nonsimple singularitics. Moreover,
Wi(H) + wt(x) + wt(y) = 2d —a — b.

Thus, by Theorem 1.5, we obtain the following corollary.

Corollary 1.6. Suppose that f(x,y) defines a nonsimple curve singularity. Then the
Hessian deformation F(x, y, 2} = f(x,y) -+ zH (x, y) defines a free divisor in C3, 0.

The converse of Corollary 1.6, that for simple curve singularities the Hessian deforma-
tion does not define a free surface divisor, is “almost true”.

Theorem 1.7. The Hessian deformation of a simple curve singularity f(x,y) in C2,0
defines a free surface singularity in C* only for Ay and Es but in no other cases.
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For example, the cusp f(x, y) = x° — y* has Hessian deformation F(x, y,z) = x> —

y? — 12zx which is a Morse singularity, and hence not free by earlier comments. See
Section 4 for the proof in the general case.

Remark 1.8, In fact, the numerical conditions in Theorems 1.1 and 1.5 and in Proposi-
tion 1.4 can be naturally rewritten in terms of the weight of the Hessian /1. Condition (2)
for Theorem 1.1 becomes for the set of generators {1, ha}

wt(g) + wt(h1) + wi(ha) = wi(H) + wt(x) + wi(y)
and the condition (1.3} in Proposition 1.4 becomes

2wt(g) + wt(h;) > wt( f) + wi(H).

Written in this form it is at first surprising that any g other than the Hessian satisfies the
conditions. In fact, quite a few do. For example, we generally have for Pham-Brieskormn
curve singularities

Corollary 1.9, For the curve singularity defined by f(x,y) = x¥ - y*, suppose that
glx, vy = x*yt is fully extendable and wi(g) = wi(f). Then the monomial deformation
Fix, vy, 2) = x? + y2 + zx*y* defines a free divisor in C2.

Proof of Coroliary 1.9. By Remark 1.3, we may assume g ¢ J(f). We have wt(x, ) =
(@, b), wi(f) = ab and wt(H) = 2(ab — a — b). Since J(f) = (x>1,y771), we see
(J{F): g) = (xP=1=* yo=1=4} and up to a constant facior the Hessian H = xb? 2472,

Then, condition (2) follows from
Wt(xkye) + wt(xb_l—k) + wt(y“"_]"e) =2ab—a—b.

By assumption, g is fully extendable, so Theorem 1.5 implies that the deformation defines
afree divisor. O

Example 1.10 (Free equisingular deformations). For the homogeneous germ f(x, y} =
104+ 310 (4, b) = (1,1) and d = 10. We have J(f) = (x°,¥%). Any g = x*y ¢ J ()
with min{k, £} > 6 satisfies {1.3), and so is fully extendable. By Corollary 1.9 soch
monomial deformations x1© + y19 4- zx¥ y¢ define free divisors.

Example 1.11 (Non-Pham—Brieskorn free equisingular deformation). Consider the
weighted homogeneous germ f{x, y) = x® +xy°, with (a, b) = (5,7) and d = 40. Since
J(F) = 8x7 + 33, 5xy"), for g = x%y? we have (J(f): g) = (x2, y*). We observe that

2wt(xy%) + min{wt(x?), w(y?)} =88 + 10> 3-40—-2(5+7)
so g is fully extendable by Proposition 1.4. Also,
wi(x8y%) + wi(x?) + wt(y?) =44 + 10+ 14 =68 =2-40-5-7

shows that condition (2) of Theorem 1.5 is satisfied. Thus, F(x, v, z) = x% +xy° + 7x0 y2
also defines a free divisor.
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Thus, freeness can hold for non-Hessian deformations not of Pham-Brieskorn type, Both
the condition that g is fully extendable and the conditions in Theorem 1 hold much more
frequently then one would first expect.

Example 1.12 (A nonfree equisingular deformation). Consider again the homogeneous
germ f(x, y) = x'% + y'0 from Example 1.10. This time we consider instead g = x7y° +
23y7. We have (J(f): g) = (x*, x2y%, y*), and (1.3) is easily seen to be satisfied so that ¢
is fully extendable. Since {J(f): g) is not a complete intersection ideal, by Theorem 1.3,
F(x,v,2)=x"0 43104 2(x7y% + x3y7) does not define a free divisor.

Remark 1,13, By considering the preceding examples, we see that condition (1) of the
theorem and condition (1.3) can both fail for certain g ¢ J{f) with wt(g) = wt(f).
However, all examples indicate that for such g, if both g is fully extendable and (J(f): g)
is a complete intersection ideal, then condition (2) is satisfied. We ask whether this is
always true?

2. Properties of Derlog(F) and ¥

In this section we establish properties of ¥, including a proof of Proposition 1.4 and an
additional lemma needed for the proof of Theorem t.1. We also establish simple weight
properties of Derlog(F) needed to prove Theorem 1.7.

Proof of Proposition 1.4, We recall F is weighted homogeneous if we assign the
nonpositive weight wt(z) = ¢ = d — s where wi(g) =5 = wt(f) = d. Let h; be a weighted
homogeneous generator satisfying

2wt(g) +wilh;) > 3d — 2(a + b).

Because W is a module homomorphism over i*: Ogs oy — Ogz g, it is sufficient to show
that a set of generators of (J(f): g) are in the image of ¥. We shall use the notation Fy
for 3F /ox, etc. Because h; € (J(f): g), we may solve

hi - g =it fe +einfy, 2.1
where we may assume ¢;; is weighted homogeneous. Then, by (2.1)

B Fy=pinFy 4+ @nFy +zR;, 2.2)
where

Ri=—@igs —wizgy. (2.3)
We easily check from (2.3)

Wi(R;) = 2wt(g) + wt(h;) — wi(f). (2.4)

By assumption, 2wt(g) + wt(h;) > 3d — 2(a + b). Hence, by (2.4) wt(R;) > 3d — 2(a +
b) — d. Since the Hessian H has weight 2(d — a — b), we conclude wt(R;) > wt(H) and
so Ry e J{fYfori=12
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We let w” denote the weight filtration on Ogaz o (with w* generated by monomials of
weight > k). Also, let " denote the induced weight filtration on Ogs o by #* = w*Ops 4.
Likewise we have an induced weight filtration on the modules 6 = Oge {3/0x, 3/3y}
and 0(m3) = Ops {0/3x, 8/dy} by defining wt(3/9x) = —a and wi(3/9y) = —b. With
respect to this weight filtration, we have initial parts

in(FY=f, in(Fy)=fc and in(Fy)=f, modm;-Ogs .

Then, the map f:62 — Oz defined by ¢ + £(f) maps 92(6“) onto w’ for all

£ > wi{H) (recall c = d — s < (). Hence, in the terminoclogy of {7], 8 is graded surjective
in filtrationt > wt(H'}. Then, as F is a “deformation of f of nonnegative weight”, we can
apply the filtered version of the preparation theorem [7, Lemma 7.4] (or see the related
filiered Nakayama’s Lemma [8, Lemima 1.1]) to conclude that the corresponding map
Br:8(ma) = Ugs  (sending ¢ — {(F)) with the induced filtrations, maps

Br(B(r) ) =8 forall £ > wt(H). (2.5)

Thus, by (2.4) and (2.5) there exist ¢/ € 0(m2) such that {/(F) = R;. Moreover, as R; is
weighted homogeneous, we may assume that ¢; is weighted homogeneous (with respect to
(x, ¥, 2)). Now we define the weighted homogeneous vector fields

b 9 3
= iy — By — -zl 2.6
& = @il 3% Pi2 3y i 3z zg; (2.6)

By (2.2), (2.3), and (2.6), & (F) = 0; thus, ¢; € Derlog(F). 0O

For the proof of Theorem 1.1, we also need two simple properties of the image and
kernel of the homomorphism . For these we consider the determinantal vector fields.
If {u, v} denote any pair of x, ¥, z. Then, we note that the determinantal vector field
Taw = Fpojou — F,6/0v € Derlog(F).

Lemma 2.1.
(1) J(f) CIm(¥)
(2) ker(¥) = Ogs p{nx,y} mod m; - 05.

Proof. For (1), ¥ (15,7} = — fx, ¥ (n1y.2) = — fy, and Im(¥) is an ideal.
For (2) we may write £ € ker(¥) as

: 3 8 8
f=ailx,y, )~ +ax. v, 00— +a(x, ¥y, 2)—. 2.7
dx ‘ ay 0z

Then, arguing as in (1.1), ¥ (£) = 0 implies that a;(x, ¥, 0) fx + a2(x. ¥, 0) fy, = 0. As
{fx, fy} forms a regular sequence, there exists a ¥y € Ogs  such that

(@1(x,y,0), a2(x, v, 0)) = {fy, — fr) = ¥ (Fy, —Fx) mod m; - Ogs o

implying the conclusion of the lemma. O
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3. Proof of Theorem 1
Sufficiency

To prove freeness we shall use one form of Saito’s criterion [14] for freeness of
a hypersurface. Suppose that X,0 € CF,0 is a hypersurface. Let {; € Derlog(X) for
i=1,...,p. =) a;8/dx;, then we let A = (g;;) denote the matrix of coefficients.
For such a situation, Saito gives the following criterion for X to be free.

Saifo’s criterion 3.1. If % = det{A) defines X with reduced structure, then V is a free
divisor, and {¢1, ..., {p} generate Derlog(X).

To prove the theorem we shall construct the vector fields in Derlog(X) and prove they
satisfy Saito’s criterion 3.1.

Construction of generators for Derlog(X)

We let X be the hypersurface singularity in (3 defined by F = 0. We first construct three
vector fields in Derlog (X). We have the Euler vector field e = axd/8x + byd/dy +cz8/8z.
To construct the other two vector fields we use the generators of Im(¥}. By assumption, it
is a complete intersection ideal generated by weighted homogeneous generators {kq, f2}.
Thus, there are vector fields ¢; € Derlog{F) for i =1, 2 of the form

d a 0
. . —h;— zEl . 3.1
& = @it ax @iz 3_)7 i Bz zE; (3.1)

Furthermore, as ¥ preserves the weight decomposition (it increases weights by s — d), we
may assume the vector fields are weighted homogensous.

Verification that X is free _

‘We have constructed three vector fields e, ¢1, &> € Derlog(X). It remains to show that
they freely generate Derlog(X). We do this using Saito’s criterion 3.1. Let A denote the
matrix of coefficients, and » = det(A). As the 3 vectors are linearly dependent on X, £
vanishes on Xy, and hence on X. Since F is a reduced equation for (X, 0), thenh =& - F
for a germ o € O3 . It is enough to show that « is a unit. As both  and F are weighted
homogeneous, then so is ¢. We can calculate its weight

wi(e) = wt(h) — wt(F) = wt(x) + wtlp12) + wt(ha) — d
= a+b+wi{g) —d+wtlh)) + wilh) —d =0 (3.2)
by condition (2) in the theorem. Since wt(a) =0, to show that & is a unit it is sufficient to

show that «(x, y,0) #0.
H we set z =0, the matrix A takes the form

ax by 0
P11 w12 —h |- (3.3)
21 @ —h
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From (3.1), we obtain from the equations & (F)j;=0 =0fori =1,2

hy-g=oufr + 012y, hy-g=p fx-Fonfy. (34
H we apply Cramer’s rule to (3.4) we obtain

P - fr = g(pazhi — p12h2), @ - fy =gl + orh2), (3.5

where @ = det(g;;). Then, expanding (3.3) along the top row, and using (3.5) and the Euler
relafion, we evaluate

det(Ay =0 = ax{—pnh +@nh) — by(—pnhy + 21h1)
= @/glaxfc +byfy)=d-(®/g)- [.

Thus, ¢(x, ¥, 0) = - (@/g). Finally, & # 0, otherwise by (3.4) we would obtain first that
© g {—@1zhy + ki) = 0. As g # 0, this implies —@12/h2 + @a2h1 = 0. Since (A1, 42) is
a complete intersection ideal, 12 is divisible A;. Using instead g - (—@1182 4 ¢2:h1) =0
implies that ¢ is also divisible by &1. By (3.4), this implies g € J(f), a contradiction.
Hence, & is a unit and X is a free divisor.

Necessity

Suppose Derlog(F) is generated as an Ogs g-module by two elements {{1, £2}. Because
¥ is a module homomorphism over i*:Ops g — Ogz . We conclude that Im(¥) is
generated as an Ogz g-module by {h1, B2} where Iy =W () As g ¢ J(H), () ) #
Ogz,p. Also, by Lemma 2.1, Im(¥) contains J( f) and hence has finite colength. It follows
that Im(¥) is a complete intersection ideal.

Even though wi(z) < 0, we still claim, as in the case of positive weights, that the
weighted homogeneous module Derlog(F) has a set of weighted homogeneous generators.
Before saying more about this, we first finish the argument.

Let the weighted homogeneous generators be {£1, £2}. From these generators together
with e, we may construct the matrix A as in the proof of sufficiency. Again by Saito, det(A)
is a unif times F. On the other hand, we can compute the weight wt(det{A)) in terms of
the weights wit(#;) as for (2.3) to obtain

wi(det(A}) = a + b+ wi(g) — d + wt(h1) + wt(ha). (3.6)
Since (3.6) must equal d, we obtain condition (2) in the theorem. O

To justify the assertion that we may choose weighted homogeneous generators for
Derlog(F), we consider generally a weighted homogeneous submodule M € (Ogx 0)?,
where we allow nonpositive weights for the coordinates (x1, ..., xp) of C" and a weight
wt(e;) = ¢; is assigned to each g; = (0,...,0,1,0,.. ., 0) (with 1 in the jth position).
If all weights of the x; were positive, there is a straightforward algebraic argument to
show that M has a set of weighted homogeneous generators. To prove the result allowing
nonpositive weights, we use the Artin approximation theorem.
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Lemma 3.2, Let M (Ogn o) be a weighted homogeneous submodule, where we
allow nonpositive weights for the coordinates of C". Then there exist a set of weighted
homogeneous generators for M.

Proof. Let My denote the submoduie of M generated by all weighted homogeneous
elements of M. Then, My isa finitely generated submodule of M. Moreover, if {¢7, ..., &}
denotes the generators of My, then '

i =Zgijl/ij
J

with y;; weighted homogeneous. Replacing {£1,..., ¢} by the set of ¥ij gives a set of
weighted homogeneous generators for My. Thus, we may assume the ; are weighted ho-
mogeneous.

 We claim My = M. Consider §eM IE=3" 13 ;7 denotes a decomposition of £ into
components &; of distinct weights j, then the weighted homogeneity of M implies each
§; € M. Hence, each §; € My. Thus, we may write &j = } 4 Wikly, where as §; and the 2z
are weighted homogeneous, we may assume the yrj; are weighted homogeneous. Then, if
Vi = )_; Wi is the formal sum of terms of different weights, we have £ =}, v &y, in the
formal power series ring. Hence, the analytic equation

E=Y wise <)
- _

has the formal solution y; = Y. By the Artin approximation theorem, e.g., [17, Theo-
rem 4.2], there is an analytic solution to Eq. (3.7). Thus, £ € My, so we have M = Mo, O

4. Hessian deformations of simple curve singularities

To prove Theorem 1.7, we will apply Theorem 1.1. For this, we must determine Im(¥r)
for each simple curve, and in the cases for which it is a complete intersection ideal, we must
determine whether condition (2) is satisfied. In Table 1 we give for each simple curve, its
Hessian deformation, where we absorb stray constants into z to simplify the form of the
Hessian deformation. We also give a set of generators for Im(¥), and finally to determine

Table 1

Simple curve singularities and their Hessian deformations

Simple Hessian Im(¥) A
curves deformations

Ay x2—|—y2+z ) ¢
An_1,m23 x4 y2 g2 C) 2
Dpii,n23 1"+ xy? +z((g)x”"1 - yz) &2, xy,¥%)

Eg x +x233 4 z(4xy — 4 (x, %)

E7 . 13yt zny? (x, ¥%) 3

Eg ' 2y 4y {x, )
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whether condition (2) is satisfied, we list A which is the difference of the two sides of the
equation for condition (2) ' :

A=wi(g) + wi(hy) +wi(hy) — 2d —a — b). . @.1n

Once we have justified the results in this table, we can apply Theorem 1.1 to bomplete the
proof of Theorem 1.7. For Dy, 1.1, Im(¥) is not a complete intersection ideal so the Hessian
deformation is not free. For A,_;, n > 3, Es, and Ey, Im(W¥) is a complete intersection
ideal, but A s 0 so for none of these is the Hessian deformation free. Finally, for 4,
and Eg, Im(¥} is a complete intersection ideal and A = 0 so the Hessian deformations are
free.

To establish the resulis in the table for Im(¥), we use either determinantal vector fields
or vector fields found with the assistance of the program Macaulay to show the image is
attained. To show that we have not missed any genefators, we use the map

ﬁ;;v Z93 - O(C3,0

which sends ¢ — £(F). It increases weight by wt(F), and hence preserves the weight
decomposition. Also, Derlog(F) = ker(B}). Hence, if M) denotes the weight & part
of M, then Derlog(F) ) = ker(B%10am)).

A, 1, n=3:; First, Y (ny) =2y and ¢ =x8/9x — (nx? + (n — 2)z)8/8z € Derlog(F)
with ¥ (7) = —nx?. Moreover, a calculation of ker(8%) shows Derlog(F)_z = ker(8%|
B3-2)) =0, so Im(¥) 2 = 0. Hence, x € Im(¥); and it is as claimed. \ :

Dyt1, 1 2 3: To begin, ¥ (ny;) = 2xy and ¥ (y;) = v mod miy. In addition, let

{=-2(n—1)(x — z)x—a- +((n+Dx+ (n - l)zz)y—él
dx 3y
+ (dx +2(n— 1)2Z)(JC - 'z)ai;.

Then, it is easily checked that ¢ € Derlog(F), and we see ) = 4x2, Moreover, a
calculation using ker(f8r) in weights 0 and n — 3 shows that x,y ¢ Im{(¥). Hence,
Im(¥) = (x2, xy, y%).

Eg and E7: For both of these, a computation of ker(ﬁ;ﬂ) using Macaulay yields three
generators for each, which under ¥ map to x, xy, and y2. Thus, Im(¥) = (x, y2).

As: W (ny) =2y and ¥ (n,,) = 2x, and it is casily checked A =0,

Eg: Let .

L RN 3.0,
G = yiag=t (=x 1/5yz)ay+(5y—5—3/5.z)az,

] d ]
3 2 2
=y — 4+ (=1/5 — +{—3x+3/5 —.
& yax+( /yz)ay,-i—( x+/y2)az
It is straightforward to check ‘gl, {2 € Derlog(F). Then, ¥ (1) = 5y and ¥ (f2) = —3x.
Hence, Im(¥) = (x, y) and a calculation shows A = 0. This completes the verification of
the table, so Theorem 1.7 follows.
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